@
¶‘Ì“dŽ¥‹CŠw‰ïBEMS‚̉ïˆõƒjƒ…[ƒX‚â˜_•¶Ž‚ÌŠT—v‚ðЉî@
‚PD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡ 1996‚ÌŠT—v
‚P‚`D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept/Oct@1997”N‚ÌŠT—v
‚QD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Jan^April@‡•¹†1998”N‚ÌŠT—v
‚Q‚`DBEMS@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@July^Aug@1998‚ÌŠT—v
‚Q‚aDBEMS
Newsletter Sept/Oct@1998‚ÌŠT—v
‚Q‚bDBEMS
Newsletter@Jan^Feb@1999‚ÌŠT—v
‚RD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@March/April 2000‚ÌŠT—v
‚R‚`DBEMS
Newsletter May^June@2000‚ÌŠT—v
‚R‚aD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@July/Aug 2000‚ÌŠT—v
‚R‚bD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚r‚…‚‚”^‚n‚ƒ‚”@2000‚ÌŠT—v@
‚SD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Nov/Dec@2000‚ÌŠT—v
‚TD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Jan/Feb 2001‚ÌŠT—v
‚UD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@March/April2001‚ÌŠT—v
‚VD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@May/June
2001‚ÌŠT—v
‚WD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@July/Aug
2001‚ÌŠT—v
‚XD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept/Oct
2001‚ÌŠT—v
‚P‚OD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@No‚–/Dec 2001‚ÌŠT—v
‚P‚PD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Jan/Feb
2002‚ÌŠT—v
‚P‚QD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@March/April
2002‚ÌŠT—v
‚P‚RD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@May^Jun@2002‚ÌŠT—v
‚P‚SD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡@2002‚ÌŠT—v
‚P‚TD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚r‚…‚‚”^‚n‚ƒ‚”@2002‚ÌŠT—v
‚P‚UD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚’‚ƒ‚ˆ^‚`‚‚’‚‰‚Œ@2003‚ÌŠT—v@D
‚P‚VD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚™^‚i‚•‚Ž‚…@2003‚ÌŠT—v@
‚P‚WD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept^Oct@2003‚ÌŠT—v
‚P‚XD@‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX@2006”N‚i‚‚Ž^‚e‚…‚‚†‚©‚ç
‚P‚X‚`D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚’‚ƒ‚ˆ^‚`‚‚’‚‰‚Œ
2006‚ÌŠT—v@
1‚X‚aD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡@2006‚ÌŠT—v@
‚Q‚OD‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX@2006”NSept^Oct†‚©‚ç
‚Q‚PD‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX@2006”N‚m‚‚–^‚c‚…‚ƒ†‚©‚ç
‚Q‚QD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@April^May@2007‚ÌŠT—v
‚Q‚Q‚`D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@May^‚i‚•‚Ž‚…@2007‚ÌŠT—v
‚Q‚RD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept^Oct@2007‚ÌŠT—v
‚Q‚SD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Nov^Dec@2007‚ÌŠT—v
‚PDBio ElectroMagnetics No.1
1994 ˜_•¶Ž‚ÌŠT—vD
1ADBio
ElectroMagnetics No.2 1994 ˜_•¶Ž‚ÌŠT—vD
‚PBDBio ElectroMagnetics No.3 1994 ˜_•¶Ž‚ÌŠT—vD
‚PCDBioElectroMagnetics
No.4 1994 ˜_•¶Ž‚ÌŠT—vD
‚QDBio Electro Magnetics No.3 1996 ˜_•¶Ž‚ÌŠT—vD
‚Q‚`DBio
Electromagnetics No8, 1997‚ÉŒfÚ‚³‚ꂽ˜_•¶‚ÌŠT—v
‚Q‚aDBio
ElectroMagneticsNo.3 ‚`‚‚’‚‰‚Œ@1999”N@˜_•¶Ž‚ÌŠT—v
‚RDBio Electromagneti‚ƒ‚“ No.8 DEC.1999”N ˜_•¶Ž‚ÌŠT—v
‚R‚aDBio Electro Magnetics No.3
April 2000 ˜_•¶Ž‚ÌŠT—v
‚SDBio Electro Magnetics No.8 DECD2000 ˜_•¶Ž
‚S‚`DBio ElectromagneticsŽNo.1 Jan 2008˜_•¶Ž‚ÉŒfÚ‚³‚ꂽ9Œ‚̘_•¶‚ÌŠT—v‚Æ‚»‚ÌŒXŒü
‚TDBio ElectromagneticsŽNo.8 ‚c‚d‚b 2010˜_•¶Ž‚ÉŒfÚ‚³‚ꂽ˜_•¶
‚UDBEMS Vol. 37 No. 6@2016”N9ŒŽ@˜_•¶Ž‚ÉŒfÚ‚³‚ꂽ˜_•¶
‚a‚d‚l‚r‘‰ï—\eW‚©‚ç@
1DBEMS1999”N‘‰ï—\eW‚©‚ç
1‚`DBEMS2000”N‘‰ï—\eW‚©‚ç
2DBEMS2001”N‘‰ï‚Ì—\eW‚©‚ç@
3. BEMS 2002”N@”NŽŸ‘‰ï‚Ì—\eW‚©‚ç
‚S. BEMS 2012”N‘‰ï‚Ì—\eW‚©‚ç
•Ä‘¶‘Ì“dŽ¥‹CŠw‰ïiBEMS)‚̃jƒ…[ƒXƒŒƒ^[‚X‚U”N‚VE‚WŒŽ†‚©‚ç‚Q“_‚Ù‚ÇЉîB
‚PB“dŽ¥”g‚̶‘̉e‹¿“™‚Ì‘Û‰ï‹cA@
@‚P‚OŒŽ‚R‚O“ú‚©‚çƒIƒ‰ƒ“ƒ_‚̃Aƒ€ƒXƒeƒ‹ƒ_ƒ€‚ÅŠJÃBŽåÂ͂h‚d‚d‚dB@
@’áŽü”g“dŽ¥ŠE‚̃ZƒbƒVƒ‡ƒ“‚à“Æ—§‚µ‚ÄAÝ‚¯‚ç‚ê‚Ä‚¢‚Ü‚·B@
‚QB‚h‚d‚d‚d‚É‚¨‚¯‚é“dŽ¥”g‚ƶ‘̉e‹¿‚̘_•¶¸“ÇŒ‹‰Ê@
ŠeŽí˜_•¶‚̃f[ƒ^ƒx[ƒX‚ðì‚é–Ú“I‚ʼnߋŽ‚̘_•¶‚ð¸“Ç‚µ‚Ä‚¢‚é‚»‚¤‚Å‚·B
ˆê•Î‚̘_•¶‚ð‚Q–¼‚Ìê–å‰Æ‚ª“Ç‚ñ‚ÅAƒf[ƒ^ƒx[ƒX‚ÉŽc‚·‚ׂ«M—Š‚Å‚«‚é—Ç‚¢Œ¤‹†•ñ‘‚©A‹^–â‚ÌŽc‚éˆ×‚Ƀf[ƒ^ƒx[ƒX‚É‚ÍÌ—p‚Å‚«‚È‚¢Œ¤‹†•ñ‘‚©‚Ì”»•Ê‚ðs‚È‚Á‚Ä‚¢‚éB
‚Q–¼‚Ì”»’肪‘å‚«‚ˆÙ‚È‚é˜_•¶‚Í‚Rl–Ú‚Ìê–å‰Æ‚ª¸“Ç‚µ‚Ä@”»’è‚·‚é‚Æ‚¢‚¤ƒ‹[ƒ‹‚Ås‚È‚Á‚Ä‚¢‚éB@
‘æ‚P‰ñ‚̸“Ç‚Å@IN VITROi×–EƒŒƒxƒ‹AŽŽŒ±Š¯“à‚ł̃eƒXƒg“™j‚ÌŒ¤‹†F@
˜_•¶‚S‚RŒ’†‚R‚RŒ‚ª‚‚‹Ai‚‚‹—¦@‚V‚V“j@@
IN VIVO (¶‘Ì‘S‘̂ł̃eƒXƒg“™j‚ÌŒ¤‹†F
•ñ‘‚R‚VŒ’†‚Q‚VŒ‚Í‚‚‹@i‚‚‹—¦‚V‚R“j@
‰uŠw‚ÌŒ¤‹†F@
•ñ‘‚P‚SŒ’†‚SŒ‚ª‚‚‹@i‚‚‹—¦‚Q‚X“j@
‚Æ‚¢‚¤Œ‹‰Ê‚¾‚Á‚½‚»‚¤‚Å‚·B@
‚±‚̂悤‚ÉŒ¤‹†˜_•¶‚Í‘‚©‚ê‚ÄŒö•\‚·‚ê‚΂»‚ê‚Å‘S‚Ä‚ªM—Š‚Å‚«‚鳂µ‚¢Œ¤‹†‚Å‚ ‚é‚Æ”F‚ß‚Ä‚à‚炦‚é‚Æ‚ÍŒ¾‚¦‚È‚¢‚悤‚Å‚·B@
Ž„‚͉uŠwŒ¤‹†‚̃f[ƒ^ƒx[ƒX‚ÉÌ—p‚³‚ê‚銄‡‚ª’á‚¢‚Ì‚ª‹C‚É‚È‚è‚Ü‚·B@
‰uŠw’²¸‚Æ‚¢‚¤‚à‚Ì‚Í‚»‚ꂾ‚¯Œë·‚ª‘å‚«‚©‚Á‚½‚èAFX‚É•¡ŽG‚ÈðŒ‚Ì®—‚ª‘å•Ï‚ÅA–T‚©‚ç‚Ý‚é‚ÆŒ¤‹†‚ª•s\•ª‚Æ‚¯‚¿‚ð•t‚¯‚ç‚êˆÕ‚¢Žè–@‚¾‚Á‚½‚è‚·‚é‚Ì‚©‚à‚µ‚ê‚Ü‚¹‚ñB@
‰uŠw‚ð‚â‚Á‚Ä‚¢‚é•û‚É‚Í\‚µ–ó‚È‚¢‚±‚Æ‚Å‚·‚ªB
FX‚ÈŒ¤‹†Œ‹‰Ê‚ð“Ç‚ÞŽž‚ÉA‚P‚O‚O“³‚µ‚¢‚ÆM‚¶‚«‚Á‚Ä‚Í‘Ê–Ú‚ÅA‘½‚È‚è‚Æ‚à‹^‚Á‚Ä‚Ý‚é•K—v‚ª—L‚è‚Ü‚·B
–Ž¥ŠE‚͈ã—ÂÌfŽ@‚⎡—Âɗ˜—p‚³‚ê‚Ä‚¢‚éB‚»‚Ì‘Û‰ï‹c‚ªƒJƒiƒ_‚ÅŠJ³‚ꂽB
–Nancy@Wertheimeri1979”N‚ɬŽ™‚ª‚ñ‚ÆŽ¥ŠE‚ÌŠÖ˜A‚ðŽ¦´‚µ‚½˜_•¶‚ð‘‚¢‚½Œ¤‹†ŽÒj‚©‚ç‚̃Rƒƒ“ƒg
Ž¥ŠE‚ƬŽ™‚ª‚ñ‚Ȃǂ̉uŠw’²¸‚ÅA‚æ‚2mGƒJƒbƒgƒ|ƒCƒ“ƒg‚É‚µ‚ĉðÍ‚ªs‚í‚ê‚Ä‚¢‚邪A‚±‚̃Jƒbƒgƒ|ƒCƒ“ƒg‚Í2mG‚Å‚Í‚È‚A3mG‚Ås‚¤‚ׂ«‚Å‚ ‚éB
Wertheimer‚̘_•¶‚Å‚ÍAƒƒCƒ„EƒR[ƒh‚ʼnðÍ‚ðs‚Á‚Ä‚¢‚邪A3mGˆÈã‰]X‚ƃJƒbƒgƒ|ƒCƒ“ƒg‚Æ‚µ‚Ä3mG‚ð’ñ¥‚µ‚Ä‚¢‚éB
‚±‚Ì3mG‚Æ‚¢‚¤ƒJƒbƒgƒ|ƒCƒ“ƒg‚Å‘¼‚̉uŠwŒ‹‰Ê‚ðƒƒ^‰ðÍ‚Ås‚¦‚ÎAŽ¥ŠE‚ª¬Ž™‚ª‚ñ‚ð—U”‚µ‚Ä‚¢‚é‚Æ‚¢‚¤Œ‹‰Ê‚ª“¾‚ç‚ê‚éB
‚PjBEMS‚̉M. Blank‚©‚ç‚Ì•ñ
1997”N‚ÉLINET‚É‚æ‚Á‚ÄN. E. J of Medicine‚É”•\‚³‚ꂽ‘—“dü‚©‚ç‚ÌŽ¥ŠE‚ƬŽ™Šà‚ÌŠÖŒW‚Ì•ñ‘‚ÉŠÖ˜A‚µ‚ÄA]—ˆ‚Í‚±‚¤‚µ‚½‰uŠw’²¸‚ł̓JƒbƒgƒIƒt“_‚ð‚Qƒ~ƒŠƒKƒEƒX‚Éݒ肵‚Ä—ˆ‚½‚ªAFX‚ȉߋŽ‚ÌŒ¤‹†‚©‚ç‚Ý‚ê‚ÎA‚±‚̃JƒbƒgƒIƒt“_‚Í‚Rƒ~ƒŠƒKƒEƒX‚É‚µ‚½‚Ù‚¤‚ª—Ç‚¢B
‚±‚Ìl‚¦•û‚É—§‚Ä‚ÎAŽ¥ŠE‚ͬŽ™Šà‚ÆŠÖŒW‚È‚¢‚ÆŒ¤‹†ŽÒ‚ªŒ‹˜_‚ð‚¾‚µ‚½Œ¤‹†‚Å‚àuŽ¥ŠE‚ͬŽ™‚ª‚ñ‚ÉŠÖ˜A‚·‚év‚Æ‚¢‚¤Œ‹˜_‚É’u‚«Š·‚¦‚ç‚ê‚éB
@
‚k‚‰‚Ž‚…‚”‚ÌŒ¤‹†F‚ˆ³‘—“dü‚©‚ç‚ÌŽ¥ŠE‚ðŽó‚¯‚Ä‚¢‚éŽq‹Ÿ‚ð‘ÎÛ‚Æ‚µ‚½Œ¤‹†B
‚Qƒ~ƒŠƒKƒEƒXˆÈã‚Ì”˜˜IŒQ‚Æ‚»‚êˆÈ‰º‚Ì”˜˜IŒQ‚É•ª‚¯‚ÄŒŸ“¢‚µ‚½Œ‹‰Ê‚Å‚ÍA‚Qƒ~ƒŠƒKƒEƒXˆÈã‚ÌŽ¥ŠE”˜˜I‚Å‚ÍŠà‚ð‘‰Á‚³‚¹‚È‚¢‚±‚Æ‚ª‚í‚©‚Á‚½A‚Æ‚¢‚¤‚±‚Æ‚©‚çAŽ¥ŠE‚ÍŒ’N‰e‹¿‚ðˆø‚«‹N‚±‚µ‚Ä‚¢‚È‚¢A‚Æ‚¢‚¤Œ‹˜_‚ð‚¾‚µ‚½B
‚µ‚©‚µA‚Rƒ~ƒŠƒKƒEƒXˆÈ㔘˜IŒQ‚ƈȉº‚Ì”˜˜IŒQ‚É•ª‚¯‚ÄŒvŽZ‚·‚é‚ÆA‚Rƒ~ƒŠƒKƒEƒXˆÈã‚ÌŽ¥ŠE”˜˜I‚ÍA¬Ž™Šà‚ð‘‰Á‚³‚¹‚é‹°‚ꂪ‚ ‚é‚Ɠǂ߂錤‹†‚Å‚ ‚éB
iBEMSJƒRƒƒ“ƒgFƒJƒbƒgƒIƒt“_‚Ì‘I‘ð‚ÅA‰uŠw’²¸‚ÌŒ‹˜_‚ª¶‰E‚³‚ê‚邱‚ƂɂȂ邪A‚à‚Á‚Æ‘åØ‚È‚±‚Æ‚ÍAŒ¤‹†‘ÎÛ‚Æl‚¦‚½Ž¥ŠE‚ªAƒhƒ~ƒiƒ“ƒg‚È”˜˜IŒ¹‚É‚È‚Á‚Ä‚¢‚é‚©‚ÌŒŸØ‚ð‚¨‚±‚È‚¤‚±‚Æ‚Å‚ ‚éB
Ô‚ñ–V‚¾‚¯‚ð‘ÎÛ‚Æ‚·‚ê‚ΉƂ̋ߖT‚É‚ ‚é‘—“dü‚©‚ç‚ÌŽ¥ŠE‚¾‚¯‚ðŽó‚¯‚Ä‚¢‚é‚Æ„’èo—ˆ‚邪A‘å‚«‚‚È‚ê‚ΉƂł̶ŠˆŽžŠÔŠO‚ÌŽžŠÔ‚Å‚Ç‚¤‚¢‚¤Ž¥ŠE‚É”˜˜I‚µ‚Ä‚¢‚é‚©ŒÂXl‚É‚æ‚Á‚Ä‘å‚«‚ˆÙ‚È‚Á‚Ä‚‚é‚Ì‚ÅA’Pƒ‚ÉŽ©‘î‚Å‚Ì‘—“dü‚©‚ç‚ÌŽ¥ŠE‚¾‚¯‚Å‚Í‚·‚Ü‚È‚‚È‚éBj
‚QjBEMS‚̉ïˆõ‚ÍA‘‰ïŠÖŒWŽÒ‚ÉŒü‚©‚Á‚ÄAuRapidŒv‰æ‚ª1998”N‚ÅI—¹‚µ‚È‚¢‚ÅA“dŽ¥”g‚̶‘̉e‹¿‚ÌŒ¤‹†‚ðŒp‘±‚·‚ׂ«v‚Æ‚¢‚¤ŽèŽ†‚ð‘‚«‚Ü‚µ‚傤B
iBEMSJƒRƒƒ“ƒgFBEMS‚̉ïˆõ‚àŒ¤‹†Ž‘‹à‚ªŒÍ‚ê‚Ä‚Í¢‚é‚Ì‚Å‚ ‚낤Bj
‚PjƒI[ƒXƒgƒ‰ƒŠƒA•{‚ª“dŽ¥ŠE‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚錤‹†‚É’—Í
¡Œã4”N”¼‚ÌŠÔ‚ÅA‚SE‚T•S–œƒhƒ‹‚ð€”õB@
Œg‘Ñ“d˜b‚̃nƒ“ƒhƒZƒbƒg‚Æ’†Œp“ƒ‚©‚ç‚Ì“dŽ¥”g‚ÉŠÖ‚·‚錒N‰e‹¿‚ÉŠÖS‚ª ‚‚Ü‚Á‚Ä‚¢‚邱‚Æ‚©‚çƒXƒ^[ƒg‚µ‚½B Œ¤‹†‚Æ“¯Žž‚Ɉê”ÊŽs–¯‚Éî•ñ‚ð’ñ‹Ÿ‚·‚éB
‚Qj‚q‚`‚o‚h‚c•ñ‘@
‚a‚d‚l‚r‚̉ïˆõ‚ÍA‚q‚`‚o‚h‚cŒv‰æ‚Ì•ñ‘‚ðA’P‚Ƀjƒ…[ƒXƒŠƒŠ[ƒX‚ð“Ç‚Þ‚¾‚¯‚Å‚Í‚È‚A•ñ‘‚ÌŒ´•¶‚ð“ǂނׂ«‚Å‚ ‚éB@
‚Rj‚a‚d‚l‚r‚ÌŠˆ“®@
‚a‚d‚l‚r‚Æ‚µ‚Ä‚ÍA“dŽ¥ŠE‚ÌŒ’N‰e‹¿‚ðŒ¤‹†‚·‚éi‚¢‚í‚ä‚é“dŽ¥”g‚̈«‚¢–Êj‚¾‚¯‚Å‚Í‚È‚A”ñ“d—£•úŽËü‚̈ã—Âւ̉ž—p‚àŒ¤‹†‚·‚ׂµi‚¢‚í‚ä‚é“dŽ¥”g‚Ì—Ç‚¢–ÊjB
‚PjNATO‚ÌRF“dŽ¥”g”˜˜I‚ÉŠÖ‚·‚éƒ[ƒNƒVƒ‡ƒbƒvŠJÃ
1998”N10ŒŽ12|16“ú@ƒXƒƒxƒjƒA‚ÅŠJÃB
@@
‚QjEC‚Å‚ÌŒ¤‹†
1997[2000”N‚É‚©‚¯‚ÄA“S“¹ŠÖŒWŽÒ‚ÌŽ¾•a‚ÌŒ¤‹†‚ðs‚¤B
“S“¹‚É—‚Þ“dŽ¥”g‚̉e‹¿‚ÍA‚ ‚Ü‚è’–Ú‚ð—‚Ñ‚Ä‚Í‚¢‚È‚¢‚ªA_ŒoŒn‚âS‘Ÿ•a‚Æ‚ÌŠÖŒW‚𒲸‚·‚éB
ƒXƒCƒX‚Ì“S“¹]‹Æˆõ‚ð‘ÎÛ‚Æ‚µ‚½ƒRƒz[ƒgŒ¤‹†i18000lA1972|1993”Nj‚ÅA‹@ŠÖŽè‚ÉS‘Ÿ‚ÌŠ¥ó“®–¬‚ÌŽ¾Š³‚ª‘½‚¢‚ÆŒ¾‚¤Œ¤‹†‚ª‚ ‚éB
‚±‚ê‚ç‚ÌŽ¾•a‚ÆŽ¥ŠE‚̉e‹¿‚𒲸‚·‚éB
ƒƒVƒA‚Ì“S“¹i’¼—¬“d‰»j‚ÆAƒXƒCƒX‚Ì“S“¹i16Hz‚̌𗬓d‰»j‚ÅŽ¥ŠE”˜˜I‚𒲸ŠJŽn‚µ‚Ä‚¢‚éB
‚±‚ê‚ç‚©‚瓾‚ç‚ꂽ”˜˜IðŒ‚ðŠî‚ÉA“®•¨ŽÀŒ±‚âl‚É”˜˜I‚µ‚½Žž‚̉e‹¿‚ðŒ¤‹†‚µ‚Ä‚¢‚B
iBEMSJƒRƒƒ“ƒgF’¼—¬Ž¥ŠE‚àŒ¤‹†‚Ì‘ÎÛ‚ÉŽæ‚èã‚°‚Ä‚¢‚éA‚±‚ê‚Í’¼—¬‚Å‚àŽžŠÔ•Ï“®‚ª‚ ‚é‚©‚ç‚Æ„’èj
‚Rj‘—“dü‚Æ—«‚Ì“ûŠà‚ÌŠÖŒW@by Roger SantiniiƒCƒ^ƒŠ[j
i‚PjÅ‹ß‚ÌFeychting‚Ì•ñiEpidemiology, 1998”Nj‚É‚æ‚ê‚ÎA‘—“dü‚ÌŽ¥ŠEi‚Pƒ~ƒŠƒKƒEƒXˆÈãj‚ðŽó‚¯‚Ä‚¢‚é—«‚ÅAEstrogen receptor-Positive‚È—«‚ÉA“ûŠà‚Ì‘Š‘Ί댯—¦‚ðŒ©‚Â‚¯‚½A‚Æ‚¢‚¤Œ¤‹†‚ª‚ ‚éB
i‚Qj1994”N‚ÌRieter‚Ì•ñ‚ÅA‘—“dü‚©‚ç‚ÌŽ¥ŠE‚̓ƒ‰ƒgƒjƒ“‚ð’ቺ‚·‚éA‚Æ‚¢‚¤Œ¤‹†‚ª‚ ‚éB@
i‚Rj1982”N‚ÌDanforth‚Ì•ñ‚É‚æ‚ê‚ÎAEstrogen receptor-Positive‚È“ûŠà‚Ì—«‚ÍA–éŠÔ‚̃ƒ‰ƒgƒjƒ“‚Ì—Ê‚ª‘ÎÛ‚É”ä‚ׂĒႢA‚Æ‚¢‚¤Œ¤‹†‚ª‚ ‚éB
@‚±‚¤‚µ‚½‚±‚Æ‚©‚çA Estrogen
receptor-Positive‚È—«‚Ì“ûŠà‚̃ƒJƒjƒYƒ€‚ÉA‘—“dü‚ÌŽ¥ŠE‚ª‰e‹¿‚µ‚Ä‚¢‚é‚Æl‚¦‚ç‚ê‚éB
i‚Pj‚ÉЉ‚½1998”N‚ÌŒ¤‹†‚ÌŒ´’˜‚ð“Ç‚ñ‚Å‚Ý‚½‚¢BŒ’N‚ÈEstrogen receptor-Positive‚È—«‚Æ‚»‚¤‚Å‚È‚¢—«‚Ì‚QŒQ‚ð‚ ‚ç‚©‚¶‚ßݒ肵‚ÄA2ŒQ‚Æ‚à‚É‘—“dü‚Ì‹ß‚‚Å5”N‚È‚¢‚µ10”NZ‚Ý‘±‚¯‚½B
‚»‚ÌŒ‹‰Ê‚Æ‚µ‚ÄA2ŒQ‚ÌŠÔ‚Ì”•a‚µ‚½“ûŠà‚É·ˆá‚ª‚ ‚Á‚½‚Æ‚¢‚¤‚Ì‚Å‚ ‚ê‚ÎAŒ¤‹†‚Í‚¤‚È‚¸‚¯‚éB
“ûŠà‚É‚È‚Á‚Ä‚µ‚Ü‚Á‚½l‚ÆŒ’N‚Èl‚ÌŠÔ‚ÅA Estrogen receptor-Positive‚È—«‚ÌŠ„‡‚ª‘½‚©‚Á‚½‚Æ‚¢‚¤‰uŠw’²¸‚Å‚ ‚ê‚ÎA‰uŠw’²¸‚̸“x‚âŒÀŠE‚ðl—¶‚µ‚È‚¯‚ê‚΂Ȃç‚È‚¢Bj
‚±‚̆‚Å‚ÍARapidƒŒƒ|[ƒg‚ÉŠÖ‚µ‚ÄA98”N7ŒŽ‚ÌDraft‚É‘±‚¢‚ÄA98”N12ŒŽ‚ÉDraft-2‚ªo‚½A‚Æ‚¢‚¤î•ñ“™‚ªŒfÚ‚³‚ê‚Ä‚¢‚éB
Bio@Electromagnetics Society(BEMS)‚̉ïˆõŒü‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’‚ÅMarch^April@2000‚ÌŠT—v‚ðŽQl‚Ü‚Å‚ÉЉ‚Ü‚·B
‚Pj@‰ïˆõƒjƒ…[ƒX‚ÌV•ÒWŽÒ‚̈¥ŽA‚©‚ç@
BEMS‚Í‚»‚ÌŠˆ“®ŠJŽn‚Ì‚Q‚O”NˆÈã‘O‚ÍAƒ}ƒCƒNƒ”g“™‚Ì‚Žü”g‚Ì”Mì—p‚Æ‚¢‚Á‚½¶‘̉e‹¿‚©‚猤‹†Šw‰ïŠˆ“®‚ªŽn‚Ü‚Á‚½B‚»‚ÌŒã’áŽü”g“dŽ¥ŠE‚ÌŒ¤‹†‚ðs‚¢A¡‚ÍÄ‚Ñ‚©‚‚Ă̂Žü”g‚ÉŠÖ‚·‚錤‹†iŒg‘Ñ“d˜b“™j‚É–ß‚è‚‚‚ ‚éB
iRAPID•ñ‚ª”s‚³‚ꂽ‚Ì‚ÅAŠwŽÒ‚Ì‹»–¡‚ÍŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ÌŒ¤‹†‚É‹»–¡‚Ì•ûŒü‚ª•ÏX‚³‚ꂽ‚Æ‚¢‚¤‚©AŒ¤‹†Ž‘‹à‚𓾂ç‚ê‚éƒe[ƒ}‚Ì•ûŒü‚ª•Ï‚í‚Á‚½‚Æ‚¢‚¤‚±‚Æ‚É‚È‚éBj@
‚Qj@‰¢B‚Ì“®Œü@
ICNIRP‚̃KƒCƒhƒŠƒAƒ“‚ÉEU“™‚Í’Ç]‚µ‚悤‚Æ‚µ‚Ä‚¢‚邪A‰¢B‚̈ꕔ‚Ì‘‚ÍICNIRP‚É‚æ‚炸AX‚ÉŒµ‚µ‚¢–\˜IŠî€‚ð’ñˆÄ‚µ‚Ä‚¢‚éB@EBEAi‰¢B‚̶‘Ì“dŽ¥‹CŠw‰ïj‚Æ‚µ‚Ä錾‚ðo‚»‚¤‚Æ‚µ‚Ä‚Ý‚éB@
ˆÈ‰º‚ÌWEB‚É錾ˆÄ‚ð’ñŽ¦‚µ‚Ä‚ ‚é‚Ì‚ÅAŽ^¬‚·‚é•û‚Í“dŽqƒTƒCƒ“‚ÅŽQ‰Á‚µ‚Ä—~‚µ‚¢B
@@http://www.ebea.org/EBEA/menu.html@
‚Ü‚½@EC‚Ì“dŽ¥”gŠÖ˜A‚͈ȉº‚ÌWEB‚ÉÝ‚éB@
http://europa.eu.int/comm/off/com_health_consumer/precaution.htm
3j ‚d‚b‚Ì“dŽ¥”g‚̶‘̉e‹¿‚ÌŒ¤‹†@
‚TŒ‚̃e[ƒ}‚ÅŒ¤‹†‚³‚ê‚éB@‚±‚Ì‚TŒ‚Æ‚à‘S‚ÄŒg‘Ñ“d˜bŠÖ˜A‚Ì‚Žü”g“dŽ¥”g‚ÌŒ¤‹†‚Å‚ ‚èA’áŽü”g‚ÌŒ¤‹†ƒe[ƒ}‚Í‚È‚¢B@
‚Sj@ƒI[ƒXƒgƒŠƒA‚̃Uƒ‹ƒcƒuƒ‹ƒO‚ÅŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚é‘Û‰ï‹c‚ª‚UŒŽ‚ÉŠJ³‚ê‚éB@
@BEMS‚̉ïˆõƒjƒ…[ƒX‚ÅA‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B
‚PDRAPIDŒv‰æ‚Ì•ñ‘
–NIEHS‚Í“dŽ¥ŠE‚ÌŒ’N‚ª‚ ‚Á‚½‚Æ‚µ‚Ăଂ³‚¢‚ÆM‚¶‚Ä‚¢‚éB
–‰ß‹Ž‚̉uŠw’²¸‚ÅŒ’N‰e‹¿‚ªŽ¦´‚³‚ꂽ‚ªAŽÀŒ±Žº‚Å‚ÌŒ¤‹†i×–EŽÀŒ±A“®•¨ŽÀŒ±‚È‚Çj‚ł͉uŠw’²¸‚ÌŒ‹‰Ê‚ðŽxŽ‚·‚錋‰Ê‚Í“¾‚ç‚ê‚Ä‚¢‚È‚¢B
–‚µ‚©‚µA‰uŠwŒ¤‹†‚ÌŒ‹‰Ê‚ðŠ®‘S‚É–³Ž‹‚·‚邱‚Æ‚à‚Å‚«‚È‚¢B
–‚ˆ³‘—“dü‚©‚ç‚ÌŽ¥ŠE‚Ȃǂ𬂳‚‚·‚é“w—Í‚ª•K—v‚Å‚ ‚éB
–RAPID‚Ìì‹Æ•”‰ï•ñi“dŽ¥ŠE‚Í2B‚Ì”ƒKƒ“«‚ ‚è‚Æ’ñ¥j‚ªŠ®¬Œã‚ɃAƒƒŠƒJŠe’n‚ÅŒö’®‰ï‚ðŠJµAFX‚Ȉӌ©‚ð•·‚¢‚½B
‚±‚ê‚ç‚ÌŒö’®‰ï‚ÌŒ‹‰Ê‚ÍA
“dŽ¥ŠE‚Ì”ƒKƒ“«‚Æ‚µ‚ÄAKnowniŠù’mj‚Å‚àAProveniØ‹’‚¾‚Ä‚ç‚ꂽEŠm’肵‚½j‚Å‚àAProbablyi‚‚¢Šm“x‚ʼn”\«‚ª‚ ‚éj‚Å‚ ‚邱‚Æ‚àA”ے肳‚ꂽB
‚»‚µ‚ÄA“dŽ¥ŠE‚Ì”ƒKƒ“‚Ƃ̈ö‰ÊŠÖŒWEŠÖ—^‚Í”rœ‚³‚êAu“dŽ¥ŠE‚Ì”Šà«‚ÍPossiblei’á‚¢Šm“x‚ʼn”\«‚ª‚ ‚éj‚Å‚ ‚év‚Æ‚È‚Á‚½B
’FŒö’®‰ï‚ªŠJ³‚ꂽ‚±‚Æ‚Í’m‚Á‚Ä‚¢‚½‚ªA‚Ç‚¤‚¢‚¤˜_‹c‚ªs‚È‚í‚ꂽ‚Ì‚©’è‚©‚Å‚Í‚È‚©‚Á‚½‚ªA‚±‚̉ïˆõƒjƒ…[ƒX‚Å‚ÍA‚»‚ꂪ‚µ–¾‚ç‚©‚É‚È‚Á‚Ä‚¢‚éB
¶‘Ì“dŽ¥‹CŠw‰ï‚a‚d‚l‚r‚̉ïˆõŒü‚¯‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡@2000‚ÌŠT—v‚ðЉ‚Ü‚·B
‚Pj“dŽ¥ŠE–hŒì‹KŠi‚Ì“®Œü@
”ñ“d—£•úŽËü–hŒìˆÏˆõ‰ï‚h‚b‚m‚h‚q‚o‚Ì“dŽ¥ŠE”˜˜IƒKƒCƒhƒ‰ƒCƒ“‚ɑ΂µ‚ÄAX‚ÉŒµ‚µ‚–³ü“ƒ“™‚©‚ç‚Ì“dŽ¥ŠE•úŽË‚ð‹K§‚·‚é“®‚«‚ª‚ ‚éB@
—áG@ƒXƒCƒX‚ƃCƒ^ƒŠƒA‚Å‚ ‚éB
ˆê•ûA‚h‚b‚m‚h‚q‚o‚̃KƒCƒhƒ‰ƒCƒ“‚ð‚»‚Ì‚Ü‚ÜŽó‚¯“ü‚ê‚é‘A—Ⴆ‚Î@ƒjƒ…[ƒW[ƒ‰ƒ“ƒh‚ª‚ ‚éB
‚Qj’áŽü”gŽ¥ŠE‚ƬŽ™ƒKƒ“‚̃v[ƒ‹‰ðÍ@
ƒJƒƒŠƒ“ƒXƒJ‚Ì‚lD‚e‚…‚™‚ƒ‚ˆ‚”‚‰‚Ž‚‡“™‚ÍAÅV‚Ì9Œ‚̉uŠw’²¸‚ð‚܂Ƃ߂ĉðÍ‚ðs‚Á‚½B@
Œ‹‰Ê‚ÍA‚OD‚Sƒ}ƒCƒNƒƒeƒXƒ‰i‚Sƒ~ƒŠƒKƒEƒXjˆÈ‰º‚ÌŽ¥ŠE‚É”˜˜I‚µ‚Ä‚àA¬Ž™ƒKƒ“‚̊댯«‚Í‘‰Á‚µ‚È‚¢‚±‚Æ‚ª”»‚Á‚½B@
‚±‚Ì‚OD‚Sƒ}ƒCƒNƒƒeƒXƒ‰‚ð’´‚¦‚鎥ŠE”˜˜I‚ðŽó‚¯Š„‡‚Í‘S‘Ì‚Ì‚OD‚W“‚ɉ߂¬‚È‚¢B@]‚Á‚ÄA‘—“dü‚ª‚ ‚Á‚Ä‚à‚X‚XD‚Q“‚ÌŽq‹Ÿ‚ɂ͊댯«‚Í‚È‚¢B@
i‹t‚É‚¢‚¦‚ÎA‚OD‚W“‚ÌŽq‹Ÿ‚Í‚OD‚Sƒ}ƒCƒNƒƒeƒXƒ‰‚ð’´‚¦‚Ä‚¢‚é‚Ì‚ÅAŠëŒ¯‚Å‚ ‚é‚Æ‚¢‚¤‚±‚Æ‚ÍA‚±‚̉ï•ñ‚Å‚Íq‚ׂç‚ê‚Ä‚¢‚È‚¢B‚±‚ÌŒ¤‹†‚ÍBritish Journal of Cancer‚É”•\‚µ‚Ä‚¢‚é‚Ì‚ÅA‚±‚ÌŒ´’˜‚ð“Ç‚Þ•K—v‚ª‚ ‚éBj@
‚Rj‰p‘‚Ì“®‚«@
‰p‘‚Å‚Í50‚g‚š“™‚Ì’áŽü”g“dŽ¥ŠE‚̃Œƒrƒ…[‚ðs‚Á‚½B@
Œ‹‰Ê‚ÍA‚±‚ê‚ç‚Ì“dŽ¥ŠE‚ÍAŒŸo‚Å‚«‚é‚©‚Å‚«‚È‚¢‚©‚Ì£ŒËÛ‚É‚ ‚é’ö“x‚̬‚³‚¢Œ’N‰e‹¿‚ª‚ ‚é‰Â”\«‚ª‚ ‚éB@
Œ»Žž“_‚Å‚Í‚Ç‚¤‚¢‚¤ƒƒJƒjƒYƒ€‚Å‚»‚¤‚µ‚½Œ’N‰e‹¿‚ª‚ ‚é‚Ì‚©”»‚Á‚Ä‚¢‚È‚¢B@
Œg‘Ñ“d˜b“™‚Ì‚Žü”g‚Ì“dŽ¥ŠE‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚錤‹†‚Æ‚Æ‚à‚ÉAŒ¤‹†‚𑱂¯‚é•K—v‚ª‚ ‚éB@
‚Sj‘Û“I‚É“dŽ¥ŠE”˜˜IŠî€‚ð“ˆê‚·‚é“®‚«‚ª‚ ‚éB@
‚v‚g‚n‚ð’†S‚É“®‚«‚ªŽn‚Ü‚Á‚Ä‚¢‚éB@
BEMS‚̉ïˆõƒjƒ…[ƒX‚ÅA‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B
‚PDƒAƒƒŠƒJ‚Ì“dŽ¥ŠE‚̶‘̉e‹¿‚ÉŠÖ‚·‚錤‹†ŽÒ‚c‚’D‚o‚‚Œ‚‹‚ªŽ€–S‚µ‚½B@
‚QD‘ÛƒKƒ“Œ¤‹†‹@ŠÖi‚h‚`‚q‚bj‚Ì“®Œü
@‚h‚`‚q‚b‚Í2001”N6ŒŽ‚É‚c‚b‚©‚ç‚d‚k‚e‚Ì“dŽ¥ŠE‚ÉŠÖ‚·‚锃Kƒ“«‚Ì•]‰¿‚ðs‚¤B
@‚±‚Ì•]‰¿‚ÌŒ‹‰Ê‚Í‘½•ª@2002”N1ŒŽ‚É‚h‚`‚q‚b‚©‚犧s•¨‚Æ‚µ‚Ä”s‚·‚éB
@iƒAƒƒŠƒJ‚Ì‚q‚`‚o‚h‚c‚Ì•ñ‚©‚çA¡“x‚Í‘Û“I‚È‹@ŠÖ‚ª•]‰¿‚ðs‚¤‚±‚Æ‚É‚È‚è‚Ü‚µ‚½B‚Ç‚¤‚È‚é‚©Šy‚µ‚Ý‚Å‚·Bj
@ˆÈã@
‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B
‚Pj‚h‚d‚d‚d‚Æ‚h‚b‚m‚h‚q‚o‚̘AŒg
¡Œã@‚±‚Ì2’c‘Ì‚Í‹¤“¯ƒ[ƒNƒVƒ‡ƒbƒv‚ðŠJ·‚é‚È‚Ç‚ÅA“dŽ¥ŠE‚Ì”˜˜I‚ÉŠÖ‚µ‚ĘAŒg‚ð[‚ß‚Ä‚¢‚‚±‚ƂɇˆÓ‚µ‚½B
‚h‚d‚d‚d‚̓AƒƒŠƒJ‚Ì‹KŠi§’è’c‘Ì‚Å‚·B‚h‚b‚m‚h‚q‚o‚Í”ñ“d—£•úŽËü–hŒìˆÏˆõ‰ï‚Å‚v‚g‚n“™‚Æ‹¦’²ŠÖŒW‚É‚ ‚Á‚ÄA“dŽ¥ŠEi“dŽ¥”gj‚Ì”˜˜IŠî€‚È‚Ç‚ð’ñˆÄ‚µ‚Ä‚¢‚Ü‚·B
‚±‚Ì‚Q’c‘Ì‚ª‹¦’²‚·‚ê‚ÎA‘Û“I‚È“dŽ¥”g”˜˜I‹K’è‚ÌŒˆ’è‚É‘å‚«‚ȉe‹¿—Í‚ð‚à‚‚悤‚É‚È‚é‚Å‚µ‚傤B
‚Qj‚d‚t‚Ì“®‚«@
‰ÈŠw‚ƃŠƒXƒN‚ÉŠÖ‚·‚éƒRƒ“ƒtƒ@ƒŒƒ“ƒX‚ðŠJµ‚½B‚»‚ÌŠT—v‚Í‚v‚d‚a‚ÅŒöŠJ@
http://www.jrc.es/sci-gov/sumcon.html
‰ÈŠw‚ƃŠƒXƒN‚ÉŠÖ‚µ‚Ä‚Í3‚‚̉ۑ肪‚ ‚éA‚PjH—¿‚̈À‘S«@‚Qjˆâ“`Žq@‚RjŒg‘Ñ“d˜b‚©‚ç‚Ì“dŽ¥”g@‚Å‚ ‚éB
‚Sj‚v‚g‚n‚Ì‘Û‚d‚l‚eƒvƒƒWƒFƒNƒg‚ÍŠe‘‚Ì“dŽ¥ŠE‹K§ó‹µ‚𒲸@
–ƒhƒCƒc@“dŽ¥ŠE”˜˜I‹K’è‚ð2001”N6ŒŽ‚܂łɉü³‚·‚éB@
50Hz‚ÌŽ¥ŠE‚ÉŠÖ‚µ‚Ä‚ÍŠwZ‚È‚Ç‚Ì’nˆæ‚ɑ΂µ‚Ä‚Íu—\–h‘[’uv‚ð‘I‘ðB‚Ç‚±‚Ü‚ÅŒµ‚µ‚‚·‚é‚©‚Í•s–¾‚Å‚·B
–ƒtƒBƒ“ƒ‰ƒ“ƒh‚Å‚ÍICNIRP‚̃KƒCƒhƒ‰ƒCƒ“‚ðŠî–{‚Æ‚·‚éB
–ƒXƒEƒF[ƒfƒ“‚Å‚ÍICNIRP‚ÆEU‚Ì‹K’è‚ðŽó‚¯“ü‚ê‚é‚©‚à’m‚ê‚È‚¢B@
–ƒƒVƒA@‘Û“I‚È‹K’è‚Ö‚Ì’²˜a‚̃eƒ“ƒ|‚ª’x‚¢B@
‚TjƒXƒEƒF[ƒfƒ“‚Å“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚é’²¸Œ‹‰Ê‚ð“Z‚ß‚½B@
–ƒXƒEƒF[ƒfƒ“Œê‚Å‘‚©‚ê‚Ä‚¢‚éB6ƒy[ƒW‚̉p•¶—v–ñ‚à‚ ‚éB@
–“dŽ¥”g‰ß•qÇ‚Í“dŽ¥ŠE‚ªŠÖ˜A‚µ‚Ä‚¢‚é‚Æ‚¢‚¤l‚¦‚ðŽxŽ‚·‚é‰ÈŠw“I‚ÈŒ¤‹†‚Í‚È‚©‚Á‚½B@
–‚h‚b‚m‚h‚q‚o‚â‚d‚t‚ª‹K’肵‚Ä‚¢‚é“dŽ¥ŠE”˜˜I‹K’è‚ð‚æ‚茵‚µ‚‰ü³‚·‚é•K—v‚Å‚ ‚é‚Æ‚¢‚¤‰ÈŠw“I‚ȃTƒ|[ƒg‚Í•s‘«i‚k‚‚ƒ‚‹j‚µ‚Ä‚¢‚éB
–Œ¤‹†ŽÒ‚ÍŒg‘Ñ“d˜b‚ªŒ’N‚ɉe‹¿‚ð—^‚¦‚é‚Æ‚¢‚¤ŠmØ‚ðŒ©o‚¹‚È‚©‚Á‚½B@
@@@@@@@@@@@@@ì¬F@‚Q‚O‚O‚P\‚W|‚W@
“Á‹LŽ–€‚È‚µ
@@@@@@@@@@@@@ì¬F@‚Q‚O‚O‚P\‚U|‚Q‚T@
BEMS‚̉ïˆõƒjƒ…[ƒX‚Å‚©‚ç‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B
‚PDƒƒVƒA‚̃Zƒ“ƒgƒyƒeƒ‹ƒXƒuƒ‹ƒO‚Å2000”N10ŒŽ‚ÉŠJ³‚ꂽ‘Û“dŽ¥”gƒ[ƒNƒVƒ‡ƒbƒvu‰‰W‚o‚’‚‚ƒ‚…‚…‚„‚‰‚Ž‚‡‚ªŠ®¬‚µ‚½B@ƒXƒEƒF[ƒfƒ“‚Ì‚m‚h‚v‚k‚Ì‚v‚d‚a‚ÅŒöŠJ‚µ‚Ä‚ ‚éB@‚t‚q‚k‚Íhttp://www.niwl.se/arb/2001.htm
‚QDEU‚Å‚ÍŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ÌŒ’N‰e‹¿Œ¤‹†‚ð„iB
‚RDƒCƒMƒŠƒX‚ÌNRPB‚Í@3ŒŽ6“úu’áŽü”g“dŽ¥ŠE‚Ì”Šàv‚ÉŠÖ‚·‚éê–å‰ÆƒOƒ‹[ƒv‚Ì•ñ‘‚ðŒö•\‚µ‚½B
@uŽÀŒ±Žº‚Å‚ÌŒ¤‹†‚ÍA‰uŠwŒ¤‹†‚Å“¾‚ç‚ê‚é’áŽü”g“dŽ¥ŠE‚ª”Šà«‚ðŽ‚Á‚Ä‚¢‚é‚Æ‚¢‚¤‚±‚Ƃ𖾊m‚ÉŽwŽ¦‚µ‚Ä‚Í‚¢‚È‚¢B‚µ‚©‚µA‰uŠw’²¸‚ŬŽ™Šà‚Ì‘‰Á‚̬‚³‚¢ƒŠƒXƒN‚É‚È‚Á‚Ä‚¢‚éB
@‘ål‚ÌŠà‚ÉŠÖ‚·‚é‰uŠw’²¸A“®•¨ŽÀŒ±‚â×–EŽÀŒ±“™‚É‚æ‚Á‚Ä–¾Šm‚ÈŠmØ‚ª“¾‚ç‚ê‚Ä‚¢‚È‚¢‚Ì‚ÅA‰uŠwŒ¤‹†Œ‹‰Ê‚ÅŒ‹˜_‚ðo‚·‚É‚Í•s\•ª‚Å‚ ‚éB¡Œã‚ÌŒ¤‹†‚É‚æ‚Á‚ÄA¡‚܂ł̬‰Ê‚ª‹ô‘R‚≽‚©‚Ì—vˆö‚Å‹N‚±‚Á‚½‚±‚Æ‚Å‚ ‚é‚Æ”»‚Á‚Ä‚àA’·Šú‚Ì–\˜I‚ª¬Ž™Šà‚̃ŠƒXƒN‘‘å‚̉”\«‚ÍŽc‚éBv
•ñ‘‚ÌuŒ‹˜_‚Æ¡Œã‚̉ۑèv‚Ì•”•ª‚ÍNRPB‚ÌWEB‚ÅŒöŠJB@URL‚Í@http://www.nrpb.org.uk/
‚SDƒoƒ`ƒJƒ“ƒ‰ƒWƒI•ú‘—‚Ì“dŽ¥ŠE–â‘è‚ÌŠT—v
@ŠT—v‚ªÐ‰î‚³‚ê‚Ä‚¢‚Ü‚·B@ˆÈ‰º‚Í‚»‚ÌŠT—v‚ÌŠT—v‚Å‚·B
–ƒ[ƒ}‚Ì–k‚R‚O‚‹‚‚ÌŠ‚Ƀoƒ`ƒJƒ“ƒ‰ƒWƒI•ú‘—‚Ì•ú‘—ƒ^ƒ[‚ª‚ ‚éB
@29‚̃Aƒ“ƒeƒi‚ÅAFM•ú‘—2”gA’Z”g•ú‘—27”g‚ÅA‘S¢ŠE‚ÉŒü‚¯‚Ä•ú‘—‚ðs‚Á‚Ä‚¢‚éB
@‘—M“d—Í‚Í@FM‚ªÅ‘å‚T‚O‚O‚j‚vA’Z”g‚ªÅ‘å‚U‚O‚O‚‹‚vB@
@‘—M‹Ç‚ÌŠO‰‚ÅA‘—M“d—ÍÅ‘å‚ÌŽž‚Ì“dŠE‹“x‚Í‚P‚T|‚Q‚O‚u^‚‚Æ‚¢‚¤‘ª’茋‰ÊB
–ƒoƒ`ƒJƒ“•ú‘—‚ÍA‚h‚b‚m‚h‚q‚o‚̃KƒCƒhƒ‰ƒCƒ“‚ðŽó‚¯“ü‚ê‚鎖‚É‚µ‚Ä‚¢‚½B
–‚µ‚©‚µAƒCƒ^ƒŠƒA‚ª1998”N‚h‚b‚m‚h‚q‚o‚æ‚è’á‚¢“dŠE‚ÌÅ‘å’l‚U‚u^‚‚ð‹K’肵‚½B
–‚»‚µ‚ÄAƒoƒ`ƒJƒ“•ú‘—‚ƃCƒ^ƒŠƒA•{‚Æ‚ÌŠÔ‚Å–â‘è‚Æ‚È‚Á‚½B
–‚»‚ÌŒãAƒƒfƒBƒA‚ª‚±‚Ì–â‘è‚ɉ΂ð‚‚¯‚½B
–‰uŠw’²¸‚ÌŒ‹‰Ê
‰ß‹Ž‚ÉŒü‚¤Œã‚ëŒü‚«‚̉uŠwŒ¤‹†‚ÅA‰ß‹Ž14”NŠÔ‚ÌŠÔA‘—M“ƒ‚ÌŽüˆÍ‚P‚O‚j‚l‚ÉZ‚ÞŽq‹Ÿ‚ɂͬŽ™”’ŒŒ•a‚̃ŠƒXƒN‘‘å‚Í‚È‚©‚Á‚½B
‚µ‚©‚µA‹——£‚Æ‚Ì‘ŠŠÖ‚ªŒ©‚ç‚ꂽB
‚O|‚Q‚‹‚‚͈̔͂ł̓ŠƒXƒN‚Í–ñ‚UA@‚Q|‚S‚‹‚‚Å‚Í–ñ‚QA@‚S|‚U‚‹‚‚Å‚Í–ñ‚PD‚T‚Å‚ ‚Á‚½B
ƒŠƒXƒN‚ª6‚Æ‚È‚Á‚½‚O|‚Q‚‹‚‚Å‚ÍǗᔂ͋͂©‚PiŠú‘Ò’l‚Í0.16j,
ƒŠƒXƒN‚ª2‚Æ‚È‚Á‚½‚Q|‚S‚‹‚‚Å‚ÍǗᔂ͂QA@‚S|‚U‚j‚‚Å‚ÍǗᔂª‚T‚Å‚ ‚Á‚½B
‚U|‚P‚O‚‹‚‚Ì’n“_‚Å‚ÍÇ—á‚̓[ƒ‚Å‚ ‚Á‚½@iŠú‘Ò’l‚Í‚SjB
‘—M“ƒ‚©‚ç‚Ì‹——£‚Æ“dŠE‹“x‚Æ‚Í‘ŠŠÖ‚ª‚Æ‚ê‚È‚©‚Á‚½B
iƒRƒƒ“ƒgFǗᔂª¬‚³‚¢j
¬Ž™”’ŒŒ•a‚ÍŽž‚Æ‚µ‚Ä’nˆæ“I‚É‚Ü‚½ŽžŠÔ“I‚ÉAW’†‚µ‚Ä”¶‚·‚éB
‚S|‚U‚‹‚‚Å”¶‚µ‚½‚TŒ‚ÌÇ—á‚Ì‚¤‚¿‚SŒ‚Í‚ ‚鬂³‚È‘º‚ÉW’†‚µ‚Ä‚¢‚½B
Žs–¯‚â’n•û•{‚Ì—v‹‚Å“dŠE‹“x‚𑪒肵‚½AÅ‘å‚Í‚P‚V‚u/‚‚Å‚h‚b‚m‚h‚q‚o‚Ì„§’l‚ð’´‚¦‚Ä‚¢‚È‚©‚Á‚½B
‚SŒW’†”¶‚µ‚½‘º‚Å‚Ì‚Q‚SŽžŠÔ‘ª’茋‰Ê‚Å‚ÍA“dŠE‹“x‚ÌÅ‘å‚Í‚Q‚u/‚‚Å‚ ‚Á‚½B
–ƒoƒ`ƒJƒ“•ú‘—‚Ío—Í‚ð‰º‚°‚é‚È‚Ç‚ðs‚¤‚Æ‚¢‚Á‚Ä‚¢‚邪A‚U‚u/‚ˆÈ‰º‚ð…Žç‚Å‚«‚é‚©‚Í’è‚©‚Å‚Í‚È‚¢B
@@@@@@@@@@@@@@ì¬F‚Q‚O‚O‚P\‚W|‚V@
BEMS‚̉ïˆõƒjƒ…[ƒX‚Å‚©‚ç‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B
‚PDƒIƒ‰ƒ“ƒ_‚Ì“dŽ¥”g•ñ
6ŒŽ‚ÉÅV‚Ì•ñ‘‚ð”s‚µ‚½B
‘—“dü‚©‚ç‚ÌŽ¥ŠE‚âŒg‘Ñ“d˜b‚Ì’†Œp“ƒ‚©‚ç‚Ì“d”g‚ÍAŒ»Ý‚̉Ȋw“I‚È’mŒ©‚Å‚Í–â‘è‚Í‚È‚¢B
‰p•¶‚Ì•ñ‚ÍAhttp://www.gr.nl/engels/publications/Reports/frameset.htm‚ÉŒöŠJ‚µ‚Ä‚ ‚éB
‚QD‘Û‚ª‚ñ‹¦‰ïIARC‚Ì•ñ
IARC‚Í@’áŽü”g“dŽ¥ŠE‚Í”Šà‚̉”\«‚ ‚è‚Æ‚ÌŒ‹˜_B
¬Ž™”’ŒŒ•a‚Æ0.4ƒÊƒeƒXƒ‰ˆÈã‚ÌŽ¥ŠE‚Ƃ̉uŠw’²¸‚É‚æ‚éB
“¯Žž‚ÉA¬Ž™”]Žîᇂ₻‚Ì‘¼‚ÌŠà‚Æ‚ÍŠÖŒW‚·‚é‚Æ‚¢‚¤ŠmØ‚Í‚È‚µA
‘ål‚ÌŠà‚Æ‚àŠmØ‚È‚µA
@@@@@@@@@@@@@@ì¬F ‚Q‚O‚O‚P\‚P‚O|‚S@
BEMS‚̉ïˆõƒjƒ…[ƒX‚Å‚©‚ç‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B
‚PD‰p‘‚m‚q‚o‚a‚ÌV•ñ‘
Œg‘Ñ“d˜b‚Ì“dŽ¥ŠE‚ÌŒ’N‰e‹¿‚ȂǂɈø‚«‘±‚¢‚ÄAu‚s‚d‚s‚q‚`iTerrestrial@Trunked Radio ˜a–ó‚ÍH@—¤ãˆÚ“®–³ü‚Ì’†‚Å‹Æ–±—p‚Ì‚â‚âƒnƒCƒpƒ[‚È–³üHj‚©‚ç‚Ì“dŽ¥ŠE‚ÆŒ’N‰e‹¿‚ÌŠÖ‚·‚é•ñ‘‚ð“Z‚ß‚½B•ñ‘‚Í‚v‚d‚a‚ÅŒöŠJ‚³‚ê‚Ä‚¢‚éB
‚±‚Ì–³ü‚͈ê”Ê—p‚Æ‚ÍŒ¾‚¦‚¸A‹Æ–±—p‚ÅA‚h‚b‚m‚h‚q‚o‚Ì“dŽ¥ŠE–\˜IŠî€‚ÍE‹Æl‚ð‘ÎÛ‚Æ‚µ‚½‹K’肪“K—p‚³‚ê‚éB@‘—Mo—Í‚Í‚P‚v‚â‚R‚v‚ÅA‚h‚b‚m‚h‚q‚o‚Ì‹K’è‚ɂ͇’v‚µ‚Ä‚¢‚éB
‚µ‚©‚µA‘—Mo—Í‚ª‚P‚O‚v‚ÅA‘€ìŽÒ‚Ì“ª•”‚ªƒAƒ“ƒeƒi‚É‹ßÚ‚µ‚Ä‚¢‚ê‚ÎA–\˜IŠî€‚ð’´‚¦‚é‹°‚ꂪ‚ ‚éBŽg—p‚â¡Œã‚Ì‹@ŠíÝŒv‚É’ˆÓ‚ª•K—vB
‚QDƒhƒCƒc‚ÌŒg‘Ñ“d˜b‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚錤‹†
2005”N‚Ü‚Å‹Šz‚ð”ï‚₵‚ÄŒ¤‹†‚ðs‚¤B
‚RDƒmƒ‹ƒEƒF[ŠCŒR‚ÌŒ¤‹†
“dŽq‹@Ší‚â–³ü‹@Ší‚𑽗p‚µ‚½ŒRŠÍi‘å“d—͂̃Aƒ“ƒeƒi‚⃌[ƒ_‚È‚Ç‚à‘•”õj‚Éæ‘D‚µ‚ċΖ±‚µ‚Ä‚¢‚éŒRl‚Ö‚Ì“dŽ¥”g‚̉e‹¿‚ÉŠÖ‚·‚é’²¸Œ¤‹†‚ðs‚¤B‚±‚ÌŒ¤‹†‚ׂ̈ÉAŠCŒR‚ÍA“Æ—§‚µ‚½‘æ3ŽÒ‚𵂂±‚Æ‚É‚µ‚½B
1997”N‚Ì’²¸‚Å‚ÍAæ‘gˆõ‚ÌŽq‹Ÿ‚ª‰½‚ç‚©‚̈Ùí‚ð‚à‚Á‚Ķ‚܂ꂽŠ„‡‚ª85–¼’†14–¼‚Å‚ ‚Á‚½B
‚XD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚r‚…‚‚”^‚n‚ƒ‚”D‚Q‚O‚O‚P‚ÌŠT—v
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚P”NSept/Oct†‚ª“Í‚«‚Ü‚µ‚½B‹C‚̂‚¢‚½“_‚ðЉ‚Ü‚·B
‚PBƒXƒEƒF[ƒfƒ“‚ÌŒ¤‹†ŽÒUlf BergqvistŽŽ€–SB
‚±‚Ì‚XŒŽ‚É‚È‚‚È‚Á‚½‚»‚¤‚Å‚·BŽ€ˆö“™‚Í”»‚è‚Ü‚¹‚ñA‹LŽ–‚É‚ ‚è‚Ü‚¹‚ñB
Ž„‚ªi‰äX‚ªj’²¸’c‚ŃXƒgƒbƒNƒzƒ‹ƒ€‚És‚Á‚½Žž‚Ɉӌ©ŒðŠ·‚ðs‚Á‚½Œ¤‹†ŽÒ‚Å‚·B
‚QB ˆÓŒ©•\–¾‚Æ‚µ‚Ĉȉº‚Ì“à—e‚ªŒfÚB
ƒXƒEƒF[ƒfƒ“‚Ì‘ã•\“I‚ÈV•·‚É‚Q‚O‚O‚P”N‚XŒŽŒfÚ‚³‚ꂽ“à—e‚ðA‹–‰Â‚𓾂ē]ÚB
Opinion- Experts who talk rubbish ‚½‚킲‚Æ‚ð˜b‚·Œ¤‹†ŽÒ
–––––––––––––––––––––––––––
@ˆãŠw‚ÌŒ¤‹†ŽÒ‚Í^ŽÀ‚ðAŒ¤‹†¬‰Ê‚ðŠ§s‚·‚鎩—R‚ðŽ‚ÂB”Þ‚ç‚͈Ó}‚ð‚à‚Á‚ă}ƒXƒƒfƒBƒA‚ɺ–¾‚ðo‚µ‚½‚è‚·‚邪AŒ¤‹†ƒe[ƒ}‚É•K‚¸‚µ‚àê–å‰Æ‚Å‚Í‚È‚¢ê‡‚ª‚ ‚éB@‚±‚¤‚µ‚½‚±‚Ƃ̓}ƒXƒƒfƒBƒA‚àŒöO‚à’ˆÓ‚·‚ׂ«‚Å‚ ‚éB
‘½‚‚ÌŒ¤‹†ŽÒ‚Í‚Ü‚¶‚ß‚ÅAM—Š‚Å‚«AŒö•½‚Å‚ ‚éB@‚µ‚©‚µA‚ ‚錤‹†ŽÒ‚͈Ó}“I‚Ƀ}ƒXƒƒfƒBƒA‚Éî•ñ‚𗬂µ‚Ä‚¢‚éB@‚ ‚éꇂɃ}ƒXƒƒfƒBƒA‚ð‚½‚«‚‚¯‚ÄA‚æ‚葽‚‚ÌŒ¤‹†Ž‘‹à‚ª“üŽè‚Å‚«‚é‚悤‚É‚½‚‚ç‚ÞB
ƒ}ƒXƒƒfƒBƒA‚Ö‚Ìî•ñ’ñ‹Ÿ‚⺖¾”•\‚ÉD‚Ü‚µ‚‚È‚¢ƒP[ƒX‚ª‚ ‚éB
‚PB‚ ‚«‚ç‚©‚È‹U‚è
‚QB•sŠ®‘S‚ÈA‚à‚µ‚‚͘_•¶‚Æ‚µ‚ÄŠ§s‚³‚ê‚Ä‚¢‚È‚¢Œ¤‹†¬‰Ê‚ÉŠî‚¢‚½‚èAFX‚ÈŒ¤‹†‚Ì’†‚©‚ç“Á’è‚̬‰Ê‚¾‚¯‚ð‘I‘ð‚µ‚½‚肵‚½º–¾
‚RBŒ¤‹†¬‰Ê‚ðŒÖ’£‚µ‚Äà–¾‚·‚éB
‚SBŽ©•ª‚Ìê–å—̈æˆÈŠO‚Ì•ª–ì‚Å‚Ìê–å‰Æ‚ÌU‚è‚ð‚µ‚½„‘ª
—Ⴆ‚΂P‚̃P[ƒX‚Å‚ÍAƒXƒEƒF[ƒfƒ“‚Ì‚ ‚éŠà‚ÌŒ¤‹†ŽÒ‚ÍAŠà‚ÌŒ¤‹†‚ð‚Å‚Á‚¿ã‚°‚½‚Æ‚µ‚ÄŠw‰ï‚©‚ç’Ç•ú‚³‚ꂽA
‚Q‚̃P[ƒXF@‚ ‚錤‹†ŽÒ‚Í‚m‚l‚sŒg‘Ñ“d˜b‚ª”]Žîᇂð‹N‚±‚·‚ÆŒ¾‚¤Œ¤‹†‚ðƒ}ƒXƒƒfƒBƒA‚ÉŒ¤‹†¬‰Ê‚𗬂µ‚½B‚±‚ÌŒ¤‹†‚Í‚Ü‚¾˜_•¶‚Æ‚µ‚ÄŠ§s‚³‚ê‚Ä‚¢‚È‚¢B@]‚Á‚ÄA‚±‚ÌŒ¤‹†‚ª³‚µ‚¢‚Ì‚©’N‚àŒŸØ‚Å‚«‚È‚¢B
‚R‚̃P[ƒXF@Œg‘Ñ“d˜b‚ª”]Žîᇂð‹N‚±‚·‚ÆŒ¾‚¤Œ¤‹†¬‰Ê‚ð”•\‚µ‚½B@‚±‚ÌŒ¤‹†‚ͬ‹K–Í‚È—\”õ“I‚ÈŒ¤‹†‚Å‚ ‚èAŒ¤‹†‘S‘Ì‚ð‚Ý‚ê‚Α傫‚ȃŠƒXƒN‚Å‚Í‚È‚¢‚±‚Æ‚ª‚í‚©‚éB
‚±‚Ì”Œ©‚͎Ⴕ‚©‚µ‚ÄA‹ô‘R‚ÌŒ‹‰Ê‚©‚à’m‚ê‚È‚¢‚Ì‚ÉAŒ¤‹†ŽÒ‚ÍŒg‘Ñ“d˜b‚ðŽg—p‚µ‚Ä‚¢‚½”]‚Ì‘¤‚É”]Žîᇂª”¶‚·‚é‚Æq‚ׂĂ¢‚éB
‹^‹`‚Ì‚ ‚錤‹†ŽÒ‚Í“xXƒ}ƒXƒ}ƒƒfƒBƒA‚É“oꂵAŒg‘Ñ“d˜b‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚éŒx‚ðA‚½‚킲‚Æ‚ðq‚ׂ邱‚Æ‚ª‘½‚¢B —\”õ“I‚ÈŒ¤‹†‚ÉŠî‚¢‚ă}ƒXƒƒfƒBƒA‚Ř_‹c‚ðs‚¤‚±‚Ƃͳ‚µ‚‚È‚¢B‚±‚ê‚ç‚ÍAŒ¤‹†‚Ì‘S—e‚ª–¾Šm‚É‚È‚Á‚Ä‚©‚ç˜_‹c‚·‚ׂ«‚Å‚ ‚éB
‚S‚̃P[ƒX‚Å‚ÍA‚ ‚錤‹†ŽÒ‚̓XƒEƒF[ƒfƒ“‚Ì‘ã•\“I‚ÈV•·‚ÉA‹¶‹•a‚ÍŒg‘Ñ“d˜b‚ÌŽg—p‚ªŒ´ˆö‚¾‚ÆA”•\‚µ‚Ä‚¢‚éB”Þ‚Í‚»‚Ì“¹‚Ìê–å‰Æ‚Å‚Í‚È‚¢B
‚ ‚éƒXƒEƒF[ƒfƒ“‚̉ȊwŽÒ‚͈ê˜A‚ÌŒx‚ð”•\‚µ‚½BlHŠÃ–¡—¿‚ÌAspartame‚Í”Šà«‚ð‚à‚ÂAŒg‘Ñ“d˜b‚Í”]Žîᇂ̌´ˆöA•ê“û‚ÉŠÜ‚Ü‚ê‚é“Å‘f‚ª“ûŽ™‚ðŠà‚É‚·‚éAƒAƒ‹ƒR[ƒ‹‚ªŠà‚ÌŽå—v‚ÈŒ´ˆö‚Å‚ ‚éA“™‚ÆB
ŒöO‚âƒ}ƒXƒƒfƒBƒA‚Éî•ñ‚𗬂·Ž–‚ÉŠÖ‚µ‚ÄA‚»‚ê‚炪³‚µ‚¢‚±‚Æ‚Å‚ ‚é‚Æ‚¢‚¤‚±‚Æ‚ðŠm”F‚·‚éŽè’i‚ðŠJ”‚µ‚È‚¯‚ê‚΂Ȃç‚È‚¢B
¡‚̓Cƒ“ƒ^[ƒlƒbƒg‚ÌŽž‘ã‚ÅAFX‚Èî•ñ‚ª‚v‚d‚a‚Å“üŽè‚Å‚«‚éB’N‚©‹^‹`‚ ‚麖¾‚ðŒ©‚½Žž‚ÍA‚v‚d‚a‚𒲂ׂÄAŒ¤‹†ŽÒ‚ª–{“–‚É‚»‚Ì“¹‚ÌŒ¤‹†ŽÒ‚Å‚ ‚é‚©‚Ç‚¤‚©‚Í’²‚ׂ邱‚Æ‚ª‚Å‚«‚éB
––––––––––––––––––––––
‚Æ‚¢‚¤“à—e‚Å‚·B@‚¿‚å‚Á‚Ɠ‚¢‰p•¶‚ÅA‘½ˆÓ–󂵂½Š‚à‚ ‚è‚Ü‚·B
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚P”NNov/Dec†‚ª“Í‚«‚Ü‚µ‚½B‹C‚̂‚¢‚½“_‚ðЉ‚Ü‚·B
‚PD‰p‘NRPB‚Ì•ñ
2001”N11ŒŽ8“ú‚ÉAu“d—ÍŽü”g”‚Ì“dŽ¥ŠE‚̓Aƒ‹ƒcƒnƒCƒ}[•a‚Æ‚Ì@–¾”’‚ÈŠmØ‚Í‚¦‚ç‚ê‚È‚©‚Á‚½B’A‚µAŒ¤‹†‚·‚ׂ«‰Û‘è‚ÍŽc‚Á‚Ä‚¢‚é‚Æv‚Æ‚¢‚¤•ñ‚ðo‚µ‚½B
‚QD“dŽ¥ŠE‚ÉŠÖ‚·‚鉢B‹c‰ï•ñ‚ÉŠÖ‚·‚锽˜_
ICNIRPAEBEAi‰¢B‚̶‘Ì“dŽ¥‹CŠw‰ïjACOST281i‰¢B‚Ì“dŽ¥”g‚ÉŠÖ‚·‚鋤“¯Œ¤ƒvƒƒWƒFƒNƒgj‚Í‹¤“¯‚Å”½˜_‚ðo‚µ‚½B@‚»‚Ì”½˜_‚ÍWEB‚ÅŒöŠJBHttp;//www.cost281.org
‚RDƒJƒŠƒtƒHƒ‹ƒjƒAEMFƒŠƒXƒN•]‰¿
1993”N‚ɃJƒŠƒtƒHƒ‹ƒjƒAB–@‚ÅŽn‚Ü‚Á‚½ƒvƒƒWƒFƒNƒgBŽ–âˆÏˆõ‰ï‚Ì’·‚͉uŠwŽÒ‚Å‚ ‚éB
2002”N1ŒŽ‚ÉFinal@Draft‚̃Œƒrƒ…[‚ðs‚¤B
Œ»Žž“_‚Å‚ÌFinal@Draft‚ÍWEB‚ÅŒöŠJ‚µ‚Ä‚¢‚éB@http://www.dnai.com/~EMF/research.html
ƒJƒŠƒtƒHƒ‹ƒjƒABŒú¶È‚Í2002”N2ŒŽ‚Ɉê‚‚̌ł܂Á‚½ÅI•ñ‚ðo‚·—\’è‚ÅA‚»‚ê‚Í‘½”ˆÓŒ©‚É‚à‚æ‚炸A”ˆÓŒ©‚É‚à‚æ‚ç‚È‚¢‚à‚Ì‚Æ‚È‚éB
‚SD‰p‘‚ÅŒg‘Ñ“d˜b‚©‚ç‚Ì“dŽ¥”g‚ÌŒ¤‹†@
7•S–œƒ|ƒ“ƒh‚ÌŠî‹à‚ÅŒ¤‹†A•{‚Æ’ÊM‹@‹ÆŠE‚ªÜ”¼B
‚TDƒAƒƒŠƒJ‚Ì“ÁŽêƒŒ[ƒ_iPave Paws, ƒtƒF[ƒYƒAƒŒƒC‚ð—˜—p‚µ‚½ƒAƒ“ƒeƒi‚ð‰ñ“]‚³‚¹‚È‚¢ƒŒ[ƒ_A10ŠK‚Ù‚Ç‚Ì‚‚³‚ÉŒš‘¢•¨j‚É‚æ‚éZ–¯‚ÌŒ’N‰e‹¿‚𒲸‚·‚邱‚Æ‚É‚È‚Á‚½B
‚UD’áŽü”g“dŽ¥ŠE‚̃y[ƒXƒ[ƒJ‚ւ̉e‹¿
“ñ‚‚̌¤‹†‚Å–â‘肪‚È‚¢‚Æ‚Í‚¢‚¦‚È‚©‚Á‚½B
ƒhƒCƒc‚ÌŒ¤‹†‚Å‚ÍA50Hz‚Ì“dŠE‚ª‰e‹¿Aƒtƒ‰ƒ“ƒXŒ¤‹†‚Å‚Í“d—ÍŽü”g”‚ÌŽ¥ŠE‚ÅŒ¤‹†‚ðs‚Á‚½B
‚VDƒpƒ‹ƒX«“dŽ¥ŠE‚ÉŒ’N‰e‹¿‚ÉŠÖ‚·‚é‘Ûƒ[ƒNƒVƒ‡ƒbƒv‚ª2001”N12ŒŽ‚ɃhƒCƒc‚ÅŠJ³‚ꂽB
‚P‚PD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚‚Ž^‚e‚…‚‚‚Q‚O‚O‚Q‚ÌŠT—v
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚Q”NJan/Feb†‚ª“Í‚«‚Ü‚µ‚½B‹C‚̂‚¢‚½“_‚ðЉ‚Ü‚·B
1. ‰ïˆõ‚ÌŒ¤‹†‚ÌЉî@
F. Prato‚ç‚ÌŒ¤‹†‚ÅAuShielding, but not zeroing of the
ambient field reduce stress induced analgesia in miceBv@ŠÂ‹«“dŽ¥ŠE‚ðƒ[ƒ‚Å‚Í‚È‚AŒ¸‚ç‚·‚ÆAƒ‰ƒbƒg‚̃XƒgƒŒƒX‚É‚æ‚Á‚Ä—U‹N‚³‚ê‚é’ÉŠoŒ‡”@‚ªŒ¸‚é@‚Æ‚¢‚¤Œ¤‹†‚ª‚ ‚éB WEB‚ÉŒöŠJAwww.pubs.royalsoc.ac.uk
2. ƒI[ƒXƒgƒ‰ƒŠƒAEƒjƒ…[ƒW[ƒ‰ƒ“ƒh‚Ì“®Œü
–kƒVƒhƒj[‚É‚¨‚¯‚é–³ü“ƒ‚ÌŽü•Ó‚É‚¨‚¯‚é‰uŠwŒ¤‹†‚È‚ÇA·‚ñ‚É‹c˜_‚ªs‚í‚ê‚Ä‚¢‚éB
ƒjƒ…[ƒW[ƒ‰ƒ“ƒh‚ł̊‹«Ù”»‚ÌŒ‹‰ÊAƒNƒŠƒXƒgƒ`ƒƒ[ƒ`Žs“–‹Ç‚ÍA¬ŠwZ‚ׂ̗ɌšÝ—\’è‚ÌŒg‘Ñ“d˜b‚Ì“d”g“ƒ‚ÌŒšÝ‚ÉŠÖ‚µ‚ÄA”½‘΂³‚ê‚Ä‚¢‚½‚ªAÙ”»‚Å‚ÍŸ‘iAŒšÝ‚³‚ê‚邱‚Æ‚É‚È‚Á‚½B
‚±‚ÌÙ”»‚É‚Í‘½‚‚Ìê–å‰Æ‚̈ӌ©‚ª’ño‚³‚êAŒ‹‰Ê‚Æ‚µ‚Ä‚ÍPseudo-Standardi‰¼‚Ì‹K’èA—\–h“I‚ÉŒµ‚µ‚‹K§‚·‚é‚Æ‚¢‚¤ˆÄ‚Ì‚±‚ÆHj‚Í‘Þ‚¯‚ç‚ꂽB
3. ƒIƒ‰ƒ“ƒ_‚Ìó‹µ@
ƒIƒ‰ƒ“ƒ_‚ÌHealth Council(Œ’NÈ?)‚ÍAŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚éÅV•ñ‚ð1ŒŽ‚É”•\‚µ‚½B Œ»Ý‚̉Ȋw“I‚È’mŒ©‚©‚çAŒ’N‰e‹¿‚Í‚È‚¢‚ÆA‚Ü‚½BŽq‹Ÿ‚ÌŒg‘Ñ“d˜bŽg—p‚ð‹K§‚·‚é•K—v‚à‚È‚¢‚ÆB
4. ƒhƒCƒc‚Ì‹KŠi§’è
’áŽü”gE‚Žü”g‚Ì“dŽ¥ŠE”˜˜I‚ÉŠÖ‚µ‚ÄAŒ¤‹†‚Æ‹KŠiÝ’è‚ÉŠÖ‚·‚é‰ï‹c‚ªŠJ³‚ꂽB Œ»Ý—LŒø‚È‹K’è‚ð•ÏX‚·‚é•K—v‚Í‚È‚¢‚ÆA‚È‚Á‚½B ¬Ž™Šà‚Æ’áŽü”gŽ¥ŠE‚̉uŠwŒ¤‹†‚ÍAŒ‹˜_‚ðo‚·‚É‚Í•s\•ª‚ÅAX‚Ȃ錤‹†‚ª•K—vB‚ÆB
‚TD—\–hŒ´‘¥
–ƒAƒƒŠƒJ•{‚Íu—\–hŒ´‘¥v‚ðŽxŽ‚·‚éB ‚µ‚©‚µAu¢ŠE‚Å“ˆê“I‚È—\–hŒ´‘¥v‚É‚ÍŽ^¬‚µ‚È‚¢B
–ƒ[ƒƒŠƒXƒN‚Í‚ ‚肦‚È‚¢.
–—\–hŒ´‘¥‚ð‚â‚è‚·‚¬‚é‚ÆA‹Zp‚Ìi“W‚ª•s‰Â”\‚É‚È‚éB1850”N‚ðŽv‚¢o‚¹‚ÎAƒŠƒXƒN‚ªŠF–³‚Å‚ ‚邱‚Æ‚ª”»‚é‚܂ʼn½‚à‚µ‚È
‚¢‚Æ‚¢‚¤‚Ì‚Å‚ ‚ê‚ÎA¡‚Ì‹Zp‚Ìi•ài“d‹CA“à”R‹@ŠÖAˆã–ò•i‚È‚Çj‚Í‚È‚©‚Á‚½‚Å‚ ‚낤B
‚P‚QD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚’‚ƒ‚ˆ^‚`‚‚’‚‰‚Œ@‚Q‚O‚O‚Q‚ÌŠT—v
ì¬F ‚Q‚O‚O‚Q[‚U|‚P@
BEMS‰ïˆõƒjƒ…[ƒX2002”NMarch/April†‚ª“Í‚«‚Ü‚µ‚½B@‹C‚̂‚¢‚½“_‚ðЉ‚Ü‚·B
‚PDIARC‚Ì’áŽü”g“dŽ¥ŠEƒ‚ƒmƒOƒ‰ƒt@‘æ80Šª‚ª”s‚³‚ꂽB
’áŽü”gŽ¥ŠE‚Ì”‚ª‚ñ«2B”»’è‚ÉŠÖ‚·‚郂ƒmƒOƒ‰ƒt‚ª”s‚³‚ꂽB@‡Œv‚S‚Q‚Xƒy[ƒWB
ƒAƒƒŠƒJ‚Å‚Í50ƒhƒ‹‚Åw“ü‰Â”\B@
‚QDÅ‹ß‚Ì“dŽ¥”g‚Æ”DPˆÙí‚̉uŠwŒ¤‹†‚ɑ΂·‚é‰p‘Doll‚̃Rƒƒ“ƒg
Epidemiology@i‰uŠwj@1ŒŽ†‚É”•\‚³‚ꂽLee‚ç‚ÌŒ¤‹†‚ÉŠÖ‚µ‚ÄA‰p‘NRPB‚̓Rƒƒ“ƒg‚ð”•\‚µ‚½B
‚±‚̉uŠw’²¸‚ÍA3,400–¼‚ð‘ÎÛ‚Æ‚µ‚½Œ¤‹†BTWAiŽžŠÔ‚Åd‚Ý•t‚¯‚ðs‚Á‚½”˜˜I•½‹Ï’lj‚Å‚ÍA”DP‚ւ̉e‹¿‚Í‚Ý‚ç‚ê‚È‚©‚Á‚½‚ªAő厥ŠE”˜˜I‚ðŽw•W‚Æ‚·‚ê‚ÎA16ƒ~ƒŠƒKƒEƒX‚æ‚è‘å‚«‚¢uŠÔ“I‚Èő唘˜I‚ðŽó‚¯‚½l‚Å‚ÍA‚·‚ׂĂ̗¬ŽY‚ÉŠÖ‚µ‚Ä‚ÍAƒŠƒXƒN‚Í1.8”{i CI 1.2-2.7j‚Å—LˆÓ‚ȉe‹¿‚ªŒ©‚ç‚ꂽ@‚Æ‚¢‚¤•ñ‚Å‚ ‚éB@
’F@Ž„‚Í‚Ü‚¾‚±‚ÌŒ´’˜‚ð“Ç‚ñ‚Å‚¢‚È‚¢B
‚±‚ÌŒ¤‹†‚Å‚ÍAŽQ‰Á—¦‚ª’á‚¢B Ç—á‚ł͌Ăт©‚¯‚ɑ΂µ‚Ä51%‚ªŒ¤‹†‚ɉž‘ø‚µA‘ÎÆ‚Å‚Í55%‚ª‰ž‘ø‚µ‚Ä‚¢‚é‚ɉ߂¬‚¸AƒZƒŒƒNƒVƒ‡ƒ“ƒoƒCƒAƒX‚ª”rœ‚³‚ê‚Ä‚¢‚È‚¢B@Ç—á‚Å‚ÍA‰ž‘ø‚µ‚½l‚Ì16.1%‚Í‚ƒƒCƒ„ƒR[ƒh‚ÉZ‚ÝA‹¦—Í‚µ‚È‚©‚Á‚½l‚Ì7.3%‚Í‚ƒƒCƒ„ƒR[ƒh‚ÉZ‚ñ‚Å‚¢‚½B@‘ÎÆ‚Å‚ÍA13.2%‚Æ11.7%‚Æ‘å·‚Í‚È‚©‚Á‚½B@
‚±‚ÌŒ¤‹†‚ÍAƒRƒz[ƒgŒ¤‹†‚ÅATWA‚Æ”DP‚ðŒ¤‹†‚·‚ׂAŽ¥ŠE‚Ì”˜˜I’²¸‚È‚Ç‚ðs‚Á‚½B
TWA‚Å‚ÌŽ¥ŠE”˜˜I‚Å‚ÍA3ƒ~ƒŠƒKƒEƒXˆÈ㔘˜I‚µ‚Ä‚¢‚½ê‡‚̃ŠƒXƒN‚Í1.2 (CI 0.7 – 2.2 )‚Å‚ ‚èA—LˆÓ‚ȉe‹¿‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B
‚µ‚©‚µA‚±‚̉uŠw’²¸Œ¤‹†ŽÒ‚ÍA‚±‚ê‚Å‚Í–Ê”’‚‚È‚¢‚Æ‚µ‚ÄA“–‰‚ÌŒv‰æ‚É‚Í‚È‚¢‘¼‚Ì”˜˜IðŒ‚Æ‚ÌŠÖ˜A«‚ð’T‚èAő唘˜I’l‚Æ‚ÌŠÖ˜A‚ðŒ©o‚µ‚½B@‚±‚ÌŽè–@‚̓Rƒz[ƒgŒ¤‹†‚Æ‚µ‚Ăͳ‚µ‚¢Žè–@‚Æ‚Í‚¢‚¦‚È‚¢B
3”Ô–Ú‚ÌŒ‡“_‚ÍAˆÙí”DP‚µ‚½Ç—á‚Ì”¼•ªˆÈオAˆÙí”DP‚ð‹N‚±‚µ‚Ä‚©‚玥ŠE”˜˜I—ʂ𑪒肵‚Ä‚¢‚é‚Ì‚ÅA³‚µ‚¢ƒRƒz[ƒgŒ¤‹†‚Å‚Í‚È‚¢AƒZƒŒƒNƒVƒ‡ƒ“ƒoƒCƒAƒX‚ª”rœ‚³‚ê‚È‚¢B
‚RDIEEE‚Ì“®Œü
IEEE‚Í0 – 3 kHz‚Ì“dŽ¥ŠE”˜˜I‚ÉŠÖ‚·‚é‹K’èiDraft
Standard PC95.6j‚ð쬒†B ¡”N‚ÌÅIŽl”¼Šú‚É‚Í”Œø‚³‚ê‚éB
’F‚±‚ê‚Ü‚Å‚ÌIEEE‚Ì“dŽ¥ŠE”˜˜I‹K’è‚Í‚R‚‹‚g‚š‚æ‚è‚‚¢Žü”g”‚ÉŒÀ’èB
‚SD IEEE‚ÆICES‚Ì“®‚«@l‘Ì”˜˜I‚ÉŠÖ‚·‚éˆÏˆõ‰ï‚Ì“®Œü
–”ñ”MŒø‰Ê‚Í‚Ü‚¾Šm—§‚³‚ꂽ‚Æ‚Í‚¢‚¦‚È‚¢A‹KŠi§’è‚̘_‹’‚Æ‚µ‚Ä‚Í•s\•ª‚ÅA”MŒø‰Ê‚ª‹K’è‚̘_‹’‚Æ‚È‚éB
–‚Žü”g—̈æ‚ÉŠÖ‚·‚锘˜I‹K’è‚Í‘Û“I‚É’²˜a‚ðŒv‚é‚ׂ«B
–E‹Æ“I‚È”˜˜I‚ƈê”ÊŒöO‚Ì”˜˜I‚̈ႢA•½‹Ï‚ƃs[ƒN‚ɑ΂·‚é‹K’è‚̈Ⴂ‚ÉŠÖ‚µ‚Ä‚ÍA‚±‚ê‚ç‚Í2’iŠK‚É•Ê‚¯‚é‚ׂ«‚©‚ÉŠÖ‚µ‚ÄAÄŒŸ“¢‚ðs‚¤B
‚TD‰p‘‚ÌŒg‘Ñ“d˜b’†Œp“ƒ‚©‚ç‚Ì“d”gŽÀ‘Ô’²¸Œ‹‰Ê
‰p‘‚Å‚Í’†Œp“ƒ‚ª‹ß‚‚É‚ ‚é100‚ÌŠwZ‚ÅA“d”g‹“x‚ÌŽÀ‘ª‚ðs‚Á‚½BŒ‹‰Ê‚ÍWEB‚Å‚àŒöŠJ‚³‚ê‚Ä‚¢‚éB
‚±‚Ì’²¸‚ðŽó‚¯‚ÄALondon‚ÌFinancial Times
‚ÍuŒg‘Ñ“d˜b’†Œp“ƒ‚©‚ç‚Ì“dŽ¥”g‚ÉŠÖ‚·‚é•sˆÀ‚͘a‚ç‚¢‚¾(Allayed)v‚Æ•ñ‚¶‚Ä‚¢‚éB
@BEMS‚̉ïˆõƒjƒ…[ƒXMay/June@2002†‚ª“Í‚«‚Ü‚µ‚½B
“à—e‚Í@
BEMS‚ÌV‰ï’·‚É“Œ‘å‚Ìã–ìÆ„‚³‚ñ‚ª‘Io‚³‚ê‚Ü‚µ‚½B@
‚»‚Ì‘¼‚Í“Á‹LŽ–€‚ª‚ ‚è‚Ü‚¹‚ñB@
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚Q”NJuly/Aug†‚ª“Í‚«‚Ü‚µ‚½B@
@@ì¬F@‚Q‚O‚O‚Q|‚P‚Q|‚Q‚Q@@
“Á‹LŽ–€‚͈ȉº‚Ì“_‚Å‚·B
–IEEE‚ª3kHzˆÈ‰º‚ÌŽü”g”‚ÉŠÖ‚·‚é–\˜IŠî€‚ð§’èB
¡‚Ü‚Å‚ÌIEEE‚Ì“dŽ¥ŠE–\˜IŠî€‚Í3kHzˆÈã‚ÌŽü”g”‚ª‘ÎÛ‚ÅA’áŽü”g‚Ì‹K’è‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B2002”N9ŒŽ‚ÉV‹K’肪³”F‚³‚ꂽB@‹K’è‚ÍC95.6‚Å‚±‚ê‚©‚çˆóü‚É“ü‚éB@
BEMS‰ïˆõƒjƒ…[ƒX‚É‚Í‚»‚̈ꕔ‚ªŒfÚ‚³‚ê‚Ä‚¢‚éB@’áŽü”g‚Ì“dŠE‚Ì‹K’è‚ÌЉî‚Í‚È‚¢B
’áŽü”g‚ÌŽ¥ŠE‚Ì‹K’è‚ÌЉ‚ ‚èA‚»‚ê‚ðŒ©‚é‚ÆAICNIRP‚Æ”äŠr‚µ‚ÄAˆê”ÊŒöO‚ÌŽ¥ŠE–\˜IŒÀ“x’l‚ÍA0.5Hz‚©‚ç2Hz‚͈̔͂ł͂킸‚©‚ÉICNIRP‚æ‚茵‚µ‚¢‚ªA‚»‚Ì‘¼‚ÌŽü”g”‘шæ‚Å‚ÍICNIRP‚æ‚èŠÃ‚¢B@50Hz‚Å‚Í0.1mTiICNIRPj‚ɑ΂µ‚ÄA}‚©‚ç“Ç‚ÝŽæ‚é‚Æ0.9mTiIEEEj‚Æ‚È‚Á‚Ä‚¢‚éB@‚±‚ÌŽ¥ŠE–\˜I‚Ì}‚ðˆÈ‰º‚ÉŽ¦‚·B
@@@@@@@
@@@@@@@@@ˆø—pF‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚©‚ç@
@@@@@@@@@@@@@@@@‚h‚b‚m‚h‚q‚o@public; ˆê”ÊŒöO@
ICNIEP workers;@E‹Æ“I‚È–\˜I@
IEEE public:@ˆê”ÊŒöO@
IEEE Contr.env:@E‹Æ“I‚È–\˜I@
‚±‚±‚©‚ç‚Í•MŽÒ‚̃Rƒƒ“ƒgF@
0.4ƒÊƒeƒXƒ‰ˆÈã‚ŬŽ™Šà‚Ì‘”‚Æ‚¢‚¤‚±‚Æ‚©‚ç‚h‚`‚q‚b‚Å‚Í”‚ª‚ñ«‚Q‚a‚Æ‚¢‚¤”»’è‚ð‰º‚µ‚Ä‚¢‚éB@‚»‚¤‚µ‚½ó‹µ‚É‚ ‚è‚È‚ª‚çAV‚µ‚쬂³‚ꂽƒAƒƒŠƒJ‚̊łÍA‚h‚b‚m‚h‚q‚o‚Ì’l‚æ‚èŠÃ‚¢Ž¥ŠE–\˜IŒÀ“x’l‚É‹KŠi‚ª§’肳‚ê‚Ä‚¢‚éB@
‚±‚ê‚͉½‚ðˆÓ–¡‚·‚é‚©HH
‚OD‚SƒÊƒeƒXƒ‰‰]X‚Æ‚¢‚¤‰uŠw’²¸Œ‹‰Ê‚ÍA‚Ü‚¾‚±‚¤‚µ‚½–\˜IŠî€‚Ìô’è‚É”½‰f‚·‚é‚悤‚Èu‰ÈŠw“I‚È’mŒ©v‚É‚Í‚È‚Á‚Ä‚¢‚È‚¢‚ÆAŒ©‚ç‚ê‚Ä‚¢‚éA‚Æ‚¢‚¤‚±‚Æ‚à‚¢‚¦‚éB
–ƒXƒEƒF[ƒfƒ“‚ÌSSI‚ÅŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚é•ñ‚ð‚Ü‚Æ‚ß‚½B
@Œ‹‰Ê‚ÍAŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ª”ƒKƒ“‚̈öŽq‚É‚È‚é‚Æ‚¢‚¤Šm’肵‚½Ø‹’‚Í‚È‚¢B@
@•ñ‘‚ÍSSI‚ÌWEB‚ÅŒöŠJ‚³‚ê‚Ä‚¢‚éB
‚Q‚O‚O‚Q|‚P‚Q|‚Q‚P@
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚Q”NSept/Oct†‚ª“Í‚«‚Ü‚µ‚½B
‚a‚d‚l‚r‚Ì‘n—§‚Q‚T”N‹L”O‚Ȃǂ̉ï‚Ì‹LŽ–‚È‚Ç‚ª‚ ‚éB@“Á‹LŽ–€‚Í‚È‚¢B@
ì¬G‚Q‚O‚O‚R|‚U|‚Q‚O@
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚R”NMarch/April†‚ª“Í‚«‚Ü‚µ‚½B
‚±‚Ì’†‚Å@‹»–¡‚ðŽ‚Á‚½‚Ì‚Í1“_@‚Å‚·B
Œ»Ý13ƒJ‘‚Å‹¤“¯Œ¤‹†‚ªs‚í‚ê‚Ä‚¢‚éŒg‘Ñ“d˜b‚ÌŽg—p‚Æ”]Žîᇂ̉uŠwŒ¤‹†‚Å‚·‚ªA‚±‚ÌŒ¤‹†‚ÅÇ—á‚Æ‚µ‚ăŠƒXƒg‚³‚ꂽŒ”‚ª—\‘z‚æ‚è‚È‚¢B]‚Á‚ÄAŒg‘Ñ“d˜b‚ÌŽg—p‚É‚æ‚é”]ŽîᇂȂǂ̃ŠƒXƒN‘‰Á‚ðŒŸo‚·‚éƒpƒ[‚ª¬‚³‚‚È‚é‰Â”\«‚ª‚ ‚éA‚ÆB@
@‚È‚©‚È‚©@‚±‚Ì‘ÛŒ¤‹†‚à‚¤‚Ü‚Œ¾‚Á‚Ä‚¢‚é‚Æ‚Í‚¢‚¦‚È‚¢@󋵂̂悤‚Å‚·B‚±‚ÌŒ¤‹†‚É‚Í“ú–{‚àŽQ‰Á‚µ‚Ä‚¢‚Ü‚·B
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚R”NMay/June†‚ª“Í‚«‚Ü‚µ‚½B
‚±‚Ì’†‚Å@‹»–¡‚ðŽ‚Á‚½‚͈̂ȉº‚Ì“_‚Å‚·B
‚PD‰p‘‚Í‚h‚b‚m‚h‚q‚oŠî€‚ðÌ—p@
‚t‚j‚Í“dŽ¥ŠE”˜˜IŠî€‚ðA]—ˆ‚Ì‚m‚q‚o‚a‹K’è‚©‚çA‚h‚b‚m‚h‚q‚o‚̊ɒ²˜a‚³‚¹‚½‹K’è‚É‚·‚éBƒhƒ‰ƒtƒg‚ð5ŒŽ”s‚µAƒRƒƒ“ƒg‚ð7ŒŽ28“ú‚܂Ŏ󂯕t‚¯‚Ä‚¢‚éB‚»‚ÌŒã‚É”Œø‚Æ‚È‚éB
Šî€’l‚Í‚h‚b‚m‚h‚q‚oŠî€‚É’²˜a‚µ‚Ä‚¢‚邪AE‹Æ“I‚È”˜˜I‚Å‹ÇŠ”˜˜I‚ÉŠÖ‚µ‚Ä‚ÍA‚h‚b‚m‚h‚q‚oŠî€’l‚Å‚Í‚È‚¢iŠÃ‚¢‹K’èHjB
’F‰p‘‚Å‚Í‚±‚ê‚Ü‚Å‚Í‚h‚b‚m‚h‚q‚o‚æ‚èŠÃ‚¢”˜˜IŠî€‚Å‚ ‚Á‚½B
‚QD‚b‚n‚r‚s‚Q‚P@‰¢B‚Ì“dŽ¥”g‚ÉŠÖ‚·‚鋤“¯Œ¤‹†„i@
@ƒ_ƒuƒŠƒ“‚Å2003”N5ŒŽ‚É‚v‚‚’‚‹‚“‚ˆ‚‚‚ªŠJ³‚ꂽBƒAƒuƒXƒgƒ‰ƒNƒg‚Íwww.cost21.org‚©‚çƒ_ƒEƒ“ƒ[ƒh‚Å‚«‚éB
‚RDƒI[ƒXƒgƒ‰ƒŠƒA‚ÌV‚µ‚¢–³üŽü”g”“dŽ¥ŠE”˜˜I‹K’è@
2003”N3ŒŽ‚É”Œø‚Æ‚È‚Á‚½B–³ü’ÊM“ƒ‚©‚ç‚Ì“dŽ¥ŠE”˜˜I‚È‚Ç‚É“K—pBŠî€’l‚ÍuÅV‚̉Ȋw‚É‚æ‚éviÚׂ̔Žš‚È‚Ç‚ÍAƒjƒ…[ƒXƒŒƒ^[‚É‚ÍЉ‚È‚¢j@
‚SDƒJƒŠƒtƒHƒ‹ƒjƒAB‚Ì“dŽ¥ŠE•ñ‚ɑ΂·‚锽˜_@
ƒ~ƒlƒ\ƒ^B‚Ì•ÛŒ’È‚Í4ŒŽuthere is no
scientific consensus at this time on the California reportfs conclusioniƒJƒŠƒtƒHƒ‹ƒjƒAB‚Ì“dŽ¥ŠE”˜˜I‚ÉŠÖ‚·‚錋˜_‚ÍAŒ»Žž“_‚ł͉Ȋw“I‚ȃRƒ“ƒZƒ“ƒTƒX‚𓾂Ă¢‚È‚¢jv‚Æ‚¢‚¤•ñ‚ð”•\‚µ‚½B
•ñ‘‚Íwww.health.state.mn.us/divs/eh/radiation/emf/caemf.htm‚Ń_ƒEƒ“ƒ[ƒh‰Â”\B
’FƒJƒŠƒtƒHƒ‹ƒjƒAB‚Å‚Íu’áŽü”g“dŽ¥ŠE‚͊댯v‚Æ‚¢‚¤ŽïŽ|‚Ì•ñ‘‚ð”s‚µ‚Ä‚¢‚Ü‚·B
‚TD‰p‘‚Å‚ÍŒg‘Ñ“d˜b‚ÌŠî’n‹Ç‚©‚ç‚Ì“d”g‚É‚æ‚錒N‰e‹¿‚ÉŠÖ‚·‚é‰uŠw’²¸‚ðs‚¤B
@@@ˆÈã@ì¬F@‚Q‚O‚O‚R|‚V|‚P‚P@
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚R”NSept/Oct†‚ª“Í‚«‚Ü‚µ‚½B@ì¬F 2003-12-3
‚±‚Ì’†‚Å@‹»–¡‚ðŽ‚Á‚½‚͈̂ȉº‚Ì“_‚Å‚·B
‚PDIEEE‚ÌCOMARil‘̉e‹¿‚ð˜_‹c‚·‚éˆÏˆõ‰ïj‚Í2002”N10ŒŽ‚É@“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚麖¾‚ðo‚µ‚Ä‚¢‚éB@
@@i•MŽÒ‰Y’F‹@‰ï‚ð‚Ý‚Ä‚±‚̺–¾‚ð“üŽè‚µ‚Ä‚Ý‚½‚¢j
‚QDIEEE‚Ì–³üŒg‘Ñ‹@Ší‚©‚ç‚Ì–hŒì•]‰¿‚Ì‹K’è
IEEE 1538@‚Æ‚µ‚ÄAŒg‘Ñ“d˜b‚â‚»‚Ì‘¼‚ÌŒg‘Ñ‹@Ší‚©‚ç‚Ì‘ª’è–@‚È‚Ç‚Ì‹K’肪³”F‚³‚ꂽB‘ÎÛŽü”g”‚Í‚R300MHz‚©‚ç3GH‚šB
‚RDICNIRP‚Ì“®Œü
ICNIRP‚Í’áŽü”g“dŽ¥ŠE‚Ì”˜˜I‹K’è‚ÉŠÖ‚µ‚ÄŒ©’¼‚µ‚ðŠJŽn‚µ‚½BiÚׂ͕sÚj
‚SD’†‘‚ÅŠJ³‚ꂽ‘æŽO‰ñ‘Û“dŽ¥ŠEƒZƒ~ƒi[
EWHO‚©‚ç‚̓Œƒpƒ`ƒ‡ƒŠAƒXƒEƒF[ƒfƒ“‚©‚çSalford‚È‚Ç‚ªoÈB
E’†‘‚Å‚ÍA–â‘肪‚È‚©‚Á‚½‚Æ‚¢‚¤Œ¤‹†•ñ‚ÍŠ§s‚³‚ê‚È‚¢ŒXŒü‚É‚ ‚éBWHOƒvƒƒWƒFƒNƒg‚Å‚ÍFX‚ÈŒ¤‹†•ñ‚ðƒŒƒrƒ…[‚·‚邪A’†‘‚Ìꇂ͖â‘肪‚ ‚Á‚½‚Æ‚¢‚¤•ñ‚¾‚¯‚ªŠ§s‚³‚ê‚é‚Ì‚ÅA’†‘‚ÌŒ¤‹†‚ðWHO‚̃Œƒrƒ…[‚Ɋ܂߂邱‚Æ‚ª¢“ï‚Æ‚È‚Á‚Ä‚¢‚éB
E’†‘‚Å‚Í×–EŽÀŒ±‚È‚Ç‚ªs‚í‚ê‚Ä‚¢‚éB50Hz‚ÌŽ¥ŠE‚𔘘I‚µ‚½×–EŽÀŒ±‚Å‚Í1mTi10ƒKƒEƒXj‚ð’´‚¦‚é‚ÆŽ¥ŠE‚̉e‹¿‚ªŒ©‚ç‚ê‚éB
E’†‘‚Æ‚µ‚Ä‚ÍICNIRP‚Ì”˜˜I‹K’è‚Ì”¼•ªi³Šm‚É‚Í‚Ç‚Ì’ö“x‚©‚Í‚Ü‚¾‚¢‚¦‚È‚¢j‚Æ‚¢‚¤‹K’è‚ðl‚¦‚Ä‚¢‚éB
ˆÈã
ì¬F@2006-4-6@
BIOELECTROMAGNETICS@NEWSLETTER •@NUMBER 188@JANUARY /FEBRUARY 2006
BEMS‚̉ïˆõƒjƒ…[ƒX188†@2006”N1|2ŒŽ†‚ª“Í‚¢‚Ä‚¢‚Ü‚·B
‚±‚Ì’†‚ÉA“Á‹L‚·‚ׂ«‚Æ‚¢‚¤‚©A‹C‚̂‚¢‚½ƒjƒ…[ƒX‚ðˆÈ‰º‚ÉЉ‚Ü‚·B
–EMF NET
EVIDENCE EVALUATIONS PUBLISHED
EU‚ÌEMF-NET‚ÍAÅ‹ßRFCELF‚ÌŒ¤‹†ó‹µ‚ÉŠÖ‚·‚é•ñ‘‚Ì‚Ù‚©‚ÉA’†ŠÔŽü”g”IF‚ÉŠÖ‚·‚é’²¸•ñ‘‚àŠ§s‚µ‚½B
i‚a‚d‚l‚r‚i’F’†ŠÔŽü”g”‚ÉŠÖ‚·‚錤‹†‚Í‚È‚¢‚Ì‚ÅA‚±‚ÌEMF-NET‚ª‚Ü‚Æ‚ß‚½•ñ‘‚Ì“à—e‚ÉŠÖS‚ª‚ ‚è‚Ü‚·BPDFƒtƒ@ƒCƒ‹‚Å‚±‚Ì•ñ‘‚ðƒ_ƒEƒ“ƒ[ƒh‚µ‚Ü‚µ‚½B‚Ü‚¾“Ç‚ñ‚Å‚¢‚Ü‚¹‚ñBj
–SWISS WORKSHOP
FOCUSED ON QUALITY IN EMF RESEARCH
2005”N11ŒŽ21-24“úAƒXƒCƒX‚ÅEMFŒ¤‹†‚ÉŠÖ‚·‚é‘Ûƒ[ƒNƒVƒ‡ƒbƒv‚ªŠJ³‚ꂽB
i‚a‚d‚l‚r‚i’F“ú–{‚©‚ç‚ÍNICT‚Ì“n•ÓŽ‚ªoÈj
‚±‚̃[ƒNƒVƒ‡ƒbƒv‚ÌÚׂ͌ã“úAEMF-NET‚É•ñ‘‚Æ‚µ‚Ä•ñ‚³‚ê‚é—\’èB
ƒvƒƒOƒ‰ƒ€‚âˆê•”‚Ìu‰‰“à—e‚ÌPPTƒtƒ@ƒCƒ‹‚ÍAWEB‚ÉŒöŠJ‚³‚ê‚Ä‚¢‚éB
ÅI“ú‚ɘ_‹c‚³‚ꂽƒgƒsƒbƒNƒX‚Æ‚µ‚ÄA“dŽ¥ŠE‚É‚æ‚éDNA‘¹‚ÌŒ¤‹†‚ª‚ ‚éB
REFLEXŒv‰æ‚ÌŠ²Ž–‚Å‚ ‚éAdlkofer‚ÍAELF‚ÉŠÖ‚·‚éŽÀŒ±Œ‹‰Ê‚Æ‚µ‚ÄA50Hz 1mT‚ÌŽ¥ŠE‚É24ŽžŠÔA’f‘±“I‚È”˜˜Ii5•ªONC10•ªOFFj‚ð‚µ‚½ê‡AƒqƒgüˆÛ‰è×–E‚ÉDNA‚Ì1d‹y‚Ñ2d—†ù‚É‘¹‚ª‹N‚±‚邱‚Æ‚ðŒ©o‚µ‚½B
‘±‚¢‚ăCƒ^ƒŠƒA‚ÌScarfi‚ÍADNA‚Ì—†ù‘¹‚ðÄŒŸØ‚·‚邱‚Æ‚ª‚Å‚«‚È‚©‚Á‚½‚Æq‚ׂ½B”Þ‚ç‚ÍARudiger‚ç‚ÌŽÀŒ±‚Æ‚Å‚«‚邾‚¯“¯ˆê‚É‚µAƒRƒƒbƒgƒAƒbƒZƒC–@‚Å4‰ñŒJ‚è•Ô‚µŽÀŒ±‚ð‚µ‚½‚ªA‚Ç‚Ì—v‘f‚à‘‰Á‚·‚邱‚Æ‚Í‚È‚©‚Á‚½A‚ÆB
”Þ—‚ÍAƒIƒŠƒWƒiƒ‹‚ÌŒ¤‹†¬‰Ê‚Ì’ÇŽŽ‚ÉŽ¸”s‚µ‚½ê‡A—¼•û‚ÌŽŽŒ±‹@ŠÖ‚ÉŒð—ˆöŽq‚ª‚ ‚é‚©A‚Ü‚¾”»‚ç‚È‚¢AŒŸo‚³‚ê‚Ä‚¢‚È‚¢ŽÀŒ±Žè–@‚È‚Ç‚Ì·ˆÙ‚ª‚ ‚é‚Ì‚Å‚ ‚낤‚ÆAq‚ׂ½B
ƒo[ƒ[ƒ‹‘åŠw‚ÌSchar‚ç‚ÍAREFLEXŒv‰æ‚ÌRudiger‚ç‚ÌŒ¤‹†‚Ì’ÇŽŽ‚ðs‚¢AELF“dŽ¥ŠE‚Ƀqƒg‚Ì×–E‚𔘘I‚µ‚½ê‡‚ÉADNA—†ù‚É‘¹‚ª‹N‚±‚邱‚Æ‚ðŠm”F‚µ‚½B
Schar‚ÍAˆê”ʂ̶ŠˆðŒ‚ÅAƒqƒg‚Ì×–E‚ÌDNA‚Ì1d—†ù‚Ì‘¹‚Í–ˆ“ú1–œŒˆÊ’èí“I‚É”¶‚µ‚Ä‚¢‚éB‚»‚ê‚ç‚Ì1d—†ù‚Ì‘¹‚ÍC•œ‹@”\‚É‚æ‚Á‚ÄAC•œ‚³‚ê‚Ä‚¢‚éBDNA‚Ì2d—†ù‚Ì‘¹‚Í‹H‚Å‚ ‚èAd‘å‚Å‚ ‚éB
Rudiger‚ç‚ÌŽÀŒ±‚É—p‚¢‚½“¯‚¶‘•’u‚ÅA“¯‚¶×–E‚ð—p‚¢‚ÄASchar‚ç‚ÍRudiger‚ç‚Æ“¯‚¶Œ‹‰Ê‚𓾂½A50Hz‚ÌŽ¥ŠE‚̘A‘±”˜˜I‚Å‚ÍDNA‘¹‚Í”¶‚¹‚¸A15ŽžŠÔ‚Ì’f‘±”˜˜I‚ÅADNA‚Ì—†ù‚Ì‘¹—¦‚Ì‘‰Á‚ðŒ©o‚µ‚½B
i‚a‚d‚l‚r‚i’F50Hz‚̘A‘±”˜˜I‚ł͉e‹¿‚ª‚È‚A’f‘±”˜˜I‚ʼne‹¿‚ªo‚½‚Æ‚¢‚¤‚±‚Æ‚©‚çA‚±‚ê‚ç‚Ì”˜˜I‘•’u‚Ì’f‘±‚ÍAƒ[ƒƒNƒƒX‚É‚È‚Á‚Ä‚¢‚éH‚à‚µƒ[ƒƒNƒƒX‚É‚È‚Á‚Ä‚¢‚È‚¢‚Æ‚·‚ê‚ÎA’f‘±‚Ì“s“xA‚©‚È‚è‘å‚«‚¢dB/dt‚É‚æ‚é—U“±“d—¬‚Ì”¶‚É‚æ‚é‰e‹¿‚ªŒœ”O‚³‚ê‚éBj
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚U”N@‚l‚‚’‚ƒ‚ˆ/‚`‚‚’‚‰‚Œ†‚ª“Í‚«‚Ü‚µ‚½B
“Á‹LŽ–€‚Í‚È‚¢B
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚U”NJuly/Aug†‚ª“Í‚«‚Ü‚µ‚½B
“Á‹LŽ–€‚Í‚È‚¢B
ì¬F@20068-1-11@
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O6”NSept/Oct†‚ð‚悤‚â‚“Ç‚ÝI‚í‚Á‚½B
“Á‹L‚µ‚ÄЉ‚鎖€‚Í‚È‚¢B
@ì¬F‚Q‚O‚O‚W|‚P|‚P‚P
–‚d‚l‚e|‚m‚d‚si‚d‚t‚Ì“dŽ¥”gŠÖŒWî•ñŒöŠJƒTƒCƒgjA‚e‚f‚eiƒhƒCƒc‚Ì–³üŠÖŒWŒ¤‹†‹¦‰ïj‚ª‚Žü”g“dŽ¥ŠE‚Æ“dŽ¥ŠE‚ÌŽq‹Ÿ‚ւ̉e‹¿‚ÉŠÖ‚·‚éƒ[ƒNƒVƒ‡ƒbƒv‚ðŠJÃB2006”N11ŒŽ––‚ÉŠJ×\’èB
ˆÈ‰º‚̃TƒCƒg‚Éî•ñ‚ªŒöŠJ‚³‚ê‚Ä‚¢‚éBhttp://www.fgf.de/
‚a‚d‚l‚r‚i’FŽÀÛ‚Ì‚±‚̃[ƒNƒVƒ‡ƒbƒv‚ÉScope, Program, Abstracts and Presentations ‚͈ȉº‚̃TƒCƒg‚É‚ ‚é:
http://www.cost281.org@@
‘½”‚Ì”•\‚ª‚ ‚èA“Ç‚Ý‚«‚ê‚È‚¢B
–ŠØ‘‚Ì“dŽ¥ŠE‚ÌŒ¤‹†ó‹µ
‚±‚Ì’†‚ÅA‚Q‚O‚j‚g‚š‚ÌŽ¥ŠE”˜˜I‚ÌŒ¤‹†‚ðs‚Á‚Ä‚¢‚邱‚Æ‚ªÐ‰î‚³‚ê‚Ä‚¢‚éB
ŠØ‘‚Ì‚l‚n‚b‚h‚d¤‹ÆEH‹ÆE“d—ÍÈ‚Í2004”N‚É‹K’è‚ð‰ü’肵AŽŸ‚É’è‚ß‚½B@
@‚U‚O‚g‚š@“dŠE@‚RD‚T‚‹‚u^‚iZ‹ŠÂ‹«j@‚VD‚O‚‹‚u^‚i”ñZ‹ŠÂ‹«j
@‚U‚O‚g‚š@Ž¥ŠE@‚W‚R‚R‚‚fiˆê”ÊŒöOj
–‚d‚l‚e|‚m‚d‚s‚Í2004”N10ŒŽƒvƒ‰ƒn‚ÅŠJ³‚ꂽ“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚é‘Ûƒ[ƒNƒVƒ‡ƒbƒv‚Ìu‰‰W‚ð“Z‚ß‚½A18ƒy[ƒW‚Ì•¶‘‚Æ‚µ‚ÄB
@ŽQÆ‚t‚q‚kFhttp://www.jrc.cec.eu.int/emf-net/
‚±‚Ì•¶‘‚Ì’†‚ÅAˆÈ‰º‚̃Tƒ}ƒŠ[‚ª‹LÚ‚³‚ê‚Ä‚¢‚éu“dŽ¥”g‰ß•qÇ‚Í•a‘Ô‚Å‚ ‚éA¡Œã‚Íu“dŽ¥”g‚ÉŠÖ˜A‚·‚é–{‘Ô«ŠÂ‹«”ñŠ°—eÇiIEIjv‚Æ–½–¼‚·‚ׂ«‚Å‚ ‚éB
‚È‚º‚È‚ç‚ÎA‚±‚ÌŽí‚ÌÇó‚Í“dŽ¥”g‚Æ‚ÌŠm’肵‚½ˆö‰ÊŠÖŒW‚ª‚È‚¢‚©‚ç‚Å‚ ‚éBv‚ÆB
‚Q‚O‚O‚V|‚T|‚Q‚U@
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚V”NApril/May†‚ª“Í‚«‚Ü‚µ‚½B
“Á‹LŽ–€‚Í‚È‚¢B
‚µ‚©‚µAEBEA2007”N‚É”•\‚³‚ꂽREFLEXƒvƒƒWƒFƒNƒg‚̈êŠÂ‚Æ‚µ‚Äs‚í‚ꂽ100ƒÊT‚T‚OHz‚ÌŽ¥ŠE‚̉e‹¿‚ÉŠÖ‚·‚錤‹†‚ÌЉŒfÚ‚³‚ê‚Ä‚¢‚éB
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚V”NMay^‚i‚•‚Ž‚…†‚ª“Í‚«‚Ü‚µ‚½B
‹à‘ò‚Å‚a‚d‚l‚r‚Ì‘‰ï‚ªŠJ³‚ꂽB‚»‚Ì’†‚Å‚Ì”•\˜_•¶‚ÌЉ
‚Q‚O‚O‚V|‚P‚Q|‚Q‚T@
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚V”NSept/Oct†‚ª“Í‚«‚Ü‚µ‚½B
“Á‹LŽ–€‚Í‚È‚¢B
2007”N‚É‹à‘ò‚ÅŠJ³‚ꂽBEMS‚Ì”NŽŸ‘‰ï‚ÌЉî‹LŽ–‚ªŒfÚ‚³‚ê‚Ä‚¢‚éB
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚V”N‚m‚‚–/‚c‚…‚ƒ†‚ª“Í‚«‚Ü‚µ‚½B
“Á‹LŽ–€‚Í‚È‚¢B
94”N1†
1) J. D. Sahl
et al: Exposure to 60Hz Magnetic Fields in the Electric Utility Work
Environment.
@•Ä‘‚Ì“d—Íì‹Æ]Ž–ŽÒ‚Ì–\˜I—ʂ𑪒èBÅ‘å‚Ì–\˜I‚ðŽó‚¯‚éEŽí‚Å‚Ì99%ƒp[ƒZƒ“ƒ^ƒCƒ‹‚Ìő厥ŠE‹“x‚Í29ƒÊT‚Å‚ ‚éB
@(BEMSJ’F0.3ƒKƒEƒX‚̌𗬎¥ŠEAŽv‚Á‚½‚æ‚è‚È‚¢‚Ì‚Å‚Í‚È‚¢‚¾‚낤‚©?)
2) W. T. Kaune
et al: Development of a Protocol for Assessing Tine-Weighted-Average Exposure
of Young Children to Power Frequency Magnetic Fields.
@W/Leeper‚Ì–\˜IƒR[ƒh‚ÆŽÀÛ‚ÌŽ¥ŠE–\Œ‚Æ‚Í‘ŠŠÖ‚ªÌ‚ê‚Ä‚¢‚È‚¢‚±‚Æ‚ª”»–¾‚µ‚½B
3) D. L. Nadar et al: A Model for
Characterizing Residential Ground Current and Magnetic Field Fluctuation.
@ƒJƒiƒ_‚Ì“d—͉ïŽÐ‚ÌŒ¤‹†BŽÀۂ̉ƒë‚Å‚Ì”¶Œð—¬Ž¥ŠE‹“x‚ÍAƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚æ‚ê‚ÍAŒð—¬”z“dü˜H‚â‰Æ’ë“dŠí‹@Ší‚©‚ç‘å’n‚ɘR‰k‚µ‚Ä‚¢‚é‘å’n“d—¬’l‚Ì’l‚¨‚æ‚Ñ‚»‚Ì‘å‚«‚È•Ï“®‚É‚æ‚é‚à‚Ì‚Æ„’è‚Å‚«‚éB
4) M. Reito et al: Sleep Inducing
Effect of Low Energy Emission Therapy.
@27MHz“dŽ¥”g‚̈ã—Éž—p‚ÌŒ¤‹†B
5) E. M. Goodman et al: Magnetic
Fields after Translation in Escherichea Coli.
@œÜŽ¡—ÂɎg—p‚·‚é‚Æ“¯‚¶”gŒ`‚̃pƒ‹ƒXŽ¥ŠE(15ƒKƒEƒX‚̃s[ƒN’l)‚ð‘å’°‹Ûi×–Ej‚Ɉó‰Á‚µ‚½‚ç.’`”’Ž¿‚ɉe‹¿‚ªo‚½B
6) F. L. Tabran
et al: Enhanced Mutagenic Effect of a 60Hz Time-Varying Magnetic Field on
Numbers of Azide-Induced TA100 Reverting colonies.
@2ƒKƒEƒX‚Ì60HzŽ¥ŠE‚ð×–E‚Ɉó‰ÁBAzide(Šˆ«Ü)‚ð“ü‚ꂽꇂɎ¥ŠE‚É‚æ‚éƒREƒvƒƒ‚ƒ^[Œø‰Ê‚ªŒŸo‚³‚ꂽBAzide‚ð“ü‚ê‚È‚¢‚ÆŽ¥ŠE‚É‚æ‚éŒø‰Ê‚ªo‚Ä‚±‚È‚¢B
(BEMSJ’F‚±‚ê‚Íd—v‚È’mŒ©‚Å‚Í‚È‚¢‚©?‚æ‚è’჌ƒxƒ‹‚ÌŽ¥ŠE‚Å‚Í‚Ç‚¤‚©?) )
94”N2†
7) H. Lai et al: Microwave irradiation
Affects Radial-Arm Maze Performance in the Rat.
@2450MHz, 60V/m (1mW/cm2‚ÌANSI‚Ì‹–—eƒŒƒxƒ‹)‚ðˆó‰ÁB
@Ž–‘O‚Ì’“ü‚µ‚½–ò•i‚É‚æ‚Á‚ÄAƒ‰ƒbƒg‚Ìs“®‚ւ̉e‹¿“x‚ªˆÙ‚È‚éB
8) T. A. Litovitz et al: Superimposing
Spatially Coherent Electromagnetic Noise Inhabits Fields-Induced Abnormalities
in Developing Chick Embryos.
@Œ{¬‰®ƒvƒƒWƒFƒNƒg‚Æ“¯‚¶ƒpƒ‹ƒXŽ¥ŠE(ƒs[ƒNŽ¥ŠE1ƒÊTA—§‚¿ã‚èE—§‰º‚ª‚莞ŠÔ2ƒÊS)‚ðˆó‰Á‚µ‚½Žž‚͈Ù픶A‚µ‚©‚µA“¯—l‚ÈŽ¥ŠE‹“x’l‚É•Û‚¿‚È‚ª‚烉ƒ“ƒ_ƒ€‚ȃmƒCƒYŽ¥ŠE‚ðdô‚µ‚½Žž‚ÍA×–E‚ÌŠ´Žó«‚É‚¨‚¯‚éS/N”䂪—ò‰»‚µ‚½ˆ×‚©A‰e‹¿‚ªŒ»‚í‚ê‚È‚©‚Á‚½B
(BEMSJ’FdB/dT0.5T/S‚Å‚©‚È‚è‘å‚«‚¢B‚±‚ê‚Å‚Í‚©‚È‚è‚Ì‘å—U“±“d—¬‚ª—¬‚ê‚ĉe‹¿‚ªo‚Ä‚à‚¨‚©‚µ‚‚È‚¢B)
9) N. Guzelsu
et al: Effect of Electromagnetic Stimulations with different Waveforms on
Cultured Chick Tendon Fibroblasts.
@×–E‚ÉŽOŠp”g‚ÌŽ¥ŠE‚ðˆó‰ÁA“¯‚¶”gŒ`‚łೕ‰‚É”½“]‚·‚éꇂƈê•ûŒü‚Ɉê’è‚ÌꇂŔäŠrB
(BEMSJ’F‚æ‚‚í‚©‚ç‚È‚¢. )
10) S. N. Ayrapeetyyan
et al: Magnetic Fields alter Electrical Properties of Solutions and their
Physiological Effects.
@ƒAƒ‹ƒƒŠƒA‚ÌŒ¤‹†BDC20-500ƒKƒEƒX‚ÌŽ¥ŠE‚Í—n‰tEŒŒ‰t‚Ì«Ž¿‚ð•Ï‚¦‚éŒø‰Ê‚ª‚ ‚èANa, K, ClƒCƒIƒ“‚Í–³•Ï‰»ACaƒCƒIƒ“‚͉e‹¿‚ðŽó‚¯‚éB
@(BEMSJ’F‚±‚ÌŽÀŒ±‚ª³‚µ‚¯‚ê‚ÎA“ú–{‚ÌŽ¥‹Cƒ}ƒOƒlƒbƒg‚ÌŽ¡—ÃŒø‰Ê‚Ì—vˆö‚ª”»–¾‚·‚éB)
11) D. O. Brown et al: Characteristics
of Microwave Evoked Body Movements in Mice.
@‘å“d—͂̃pƒ‹ƒXƒŒ[ƒ_“d—Í(160W`KW‚̃I[ƒ_)‚ðˆó‰Á‚µ‚½Žž‚Ì‘l‚Ì‹““®‚𒲸B
‘̉·‚̉·“x㸒l‚ª0.05Ž‚É‘Š“–‚·‚é‘å“d—͈ó‰Á‚Å‚à‰e‹¿‚ªŒ»‚ê‚é‚Ì‚ÅA‚±‚ê‚͈ê‚‚̔ñ”MŒø‰Ê‚Å‚ ‚é‰Â”\«‚ª‚ ‚éB
@(BEMSJ’F”ñŒFŒø‰Ê‚Æ‚¢‚¢‚È‚ª‚ç‚à‚©‚È‚è‚Ì‘å“d—͈ó‰ÁŽž‚Å‚ ‚éB)
12) J. A. D'Andrea
et al; Rhesus Monkey Behavior during Exposure to High Peak Power 5.62MHz
Microwave Pulse.
@SAR‚ª4W/kg‚ð‰z‚¦‚é‚Ɖe‹¿‚ª‚Å‚éBƒs[ƒN“d—Í‚ªˆÙ‚È‚Á‚Ä‚à•½‹Ï’l‚Å‚ÌSAR‚ª“¯ˆê‚Å‚ ‚ê‚ΉŽ‚Ì‹““®‚ɑ΂·‚é‰e‹¿“x‚Í“¯‚¶‚Å‚ ‚éB
(BEMSJ’F‚æ‚Á‚ÄAƒ}ƒCƒNƒ”g‚Å‚ÍSAR‚Ål‚¦‚ê‚΂悢B)
94”N3†@@@@@.
13) C. G. Liddle et al: Alteration of Life
Span of Mice Chronically Exposed to 2.45GHz CW Microwave.
@ƒlƒYƒ~‚ÌŽõ–½‚ɑ΂·‚é‰e‹¿“x‚ðŒ¤‹†A3mW/cm2–˜‚Í–â‘è‚È‚µA10mW/cm2‚Å‚Í–â‘è‚Å‚ ‚éB
@BEMSJ’F(臒l‚ª‚ ‚邱‚Æ‚ª”»–¾B)
14) T. M. Phllippova
et al: Influence of Microwaves on Different Types of Receptors and the Role of
Peroxidation of Lipids on Receptor-Protein Shedding.
@ƒƒVƒA‚ÌŒ¤‹†@@@@.
@900MHzƒ}ƒCƒNƒ”g‚ÌŒ¤‹†B
(BEMSJ’F‚æ‚‚í‚©‚ç‚È‚¢B )
15) D. A. Savitz
et al: Correlation among Indices of Electric and Magnetic Field Exposure in
Electric Utility Workers.
@“d—Í]Ž–ŽÒ‚Ì”˜˜I‚Í90%ƒp[ƒZƒ“ƒ^ƒCƒ‹‚Å2ƒÊT‚ƈȊO‚É‚È‚¢B
@‚±‚ÌŒ¤‹†‚É‚Í“ú–{‚Ì“d—Í’†Œ¤‚àŽQ‰æ‚µ‚Ä‚¢‚éB
16) C. Grant et al: Protection against
Focal Cerebral Ischenia Following Exposure to a
Pulsed Electro Magnetic Field.
@”]“à‚Ì•a‘ƒ‚ɑ΂·‚鎡—Õû–@B75Hz, 28ƒKƒEƒX‚ÌŽ¥ŠEB
17) J. P. Blanchard et al: Clarification
and Application of an Ion Parametric Resonance Model for Magnetic Field
Interactions with Biological Systems
@DCŽ¥ŠE‚ƌ𗬎¥ŠE‹“x‚ÆŽü”g”A‰e‹¿‚ðŽó‚¯‚éƒCƒIƒ“‚ÌŠÔ‚ÉIPR‹¤–‚Åà–¾‚Å‚«‚邱‚Æ‚Ì—˜_‚ð’ñ¥B
18) C. F. Blacknan
et al: Empirical Test an Ion Parametric Resonance Model for Magnetic Fields
Interactions with PC-12 Cells.
17)‚Ì—˜_‚ðŽÀŒ±“I‚ÉØ–¾B
@(BEMSJ’F‚±‚ꂪ^ŽÀ‚Å‚ ‚ê‚ÎA˜R‰kŽ¥‹C‚ÌŽü”g”¬•ª‚Æ’nŽ¥‹C‹“x‚ÌŠÖ˜A‚łǂ̂悤‚ȃCƒIƒ“‚ɉe‹¿‚ª‚Å‚Ä‚à‚¨‚©‚µ‚‚È‚‚È‚éBÌ’ñ¥‚³‚ꂽƒTƒCƒNƒƒgƒ“‹¤–‚͂¤‚Ü‚ŽÀØ‚³‚ê‚È‚©‚Á‚½‚ªA¡‰ñ‚ÌIPR‚͉”\«‚ª‚‚¢Bj
‚a‚d‚l‚r˜_•¶Ž@‚P‚X‚X‚S”N‘æ‚S†‚ÌŠT—v
‚PjW. T. Kaune et al:
Simplification of the
Wertheimer-Leeper Wire Code
ƒƒCƒ„ƒR[ƒh‚ÉŠÖ‚·‚é’ñˆÄB
ʼn‚ÉWerthemer‚ç‚É‚æ‚Á‚ÄDenver’n‹æ‚ÅWire@Code‚ª’ñˆÄ‚³‚êA‚»‚ê‚ÉŠî‚¢‚ĬŽ™Šà‚Æ‘—“dü—R—ˆ‚ÌŽ¥ŠE‚Æ‚ÌŠÖ˜A«‚ªŽ¦´‚³‚ꂽ‚ªADenver’n‹æ‚Ì‘—“dE”z“d‚Ì‚â‚è•û‚̓AƒƒŠƒJ‚Ì‘¼‚Ì’n‹æ‚Æ‘å‚«‚ˆÙ‚È‚é–Ê‚ð‚à‚Á‚Ä‚¢‚½B
‚Q)
ADWDKropinski et al:
Sinusoidal 60 Hz
Electromagnetic Fields Failed to Induce Changes in Protein Synthesis in
Escherichia Coli(‘å’°‹Û)
60Hz@3mT‚ÌŽ¥ŠE‚É”˜˜IA‘å’°‹Û‚Ì‚½‚ñ‚Ï‚Ž¿‡¬‚ɑ΂µ‚ÄA‰·“x‚ð+/-0.1“x‚ɃRƒ“ƒgƒ[ƒ‹‚·‚ê‚ÎAŽ¥ŠE‚̉e‹¿‚Í–³‚©‚Á‚½B ‰·“xæ㸂ª‚ ‚ê‚ÎA‚½‚ñ‚Ï‚Ž¿‡¬‚ɕω»‚ªo‚éB
‚R) I. Nordenson et al:
Chromosomal Aberration iõF‘̈Ùíjin@Human Amniotic Cells after Intermittent Exposure to Fifty Hertz
Magnetic Fields
50Hz@30ƒ}ƒCƒNƒƒeƒXƒ‰‚ÌŽ¥ŠE‚ւ̘A‘±”˜˜I‚ÅõF‘̂ɉe‹¿‚ª‚Å‚½A
‚µ‚©‚µA300ƒ}ƒCƒNƒƒeƒXƒ‰‚ÌŽ¥ŠE‚ւ̘A‘±”˜˜I‚ł͉e‹¿‚Ío‚È‚©‚Á‚½B
50Hz@30ƒ}ƒCƒNƒƒeƒXƒ‰‚ÌŽ¥ŠE‚Ö‚ÌŠÔŒ‡iOn/Offj”˜˜I‚ł͉e‹¿‚ª‚Å‚½B
ŽÀŒ±‘•’u‚̓[ƒƒNƒƒXƒXƒCƒbƒ`‚É‚Í‚È‚Á‚Ä‚¢‚È‚¢B
iŽÀŒ±ðŒ‚ª‰½‚©•sˆÀ’肳‚ðŽ‚Á‚Ä‚¢‚éH@Ž¥ŠE‚ÌŽžŠÔ•Ï‰»dB/dt‚ª‰e‹¿‚µ‚Ä‚¢‚éHj
‚S) A. Orlando et
al:
Effect of Microwave
Radiation on the@Permeabilityi“§‰ß—Íjof Carbonic Anhydrasei’E…y‘fj
Loaded Unilamellar Liposomes(Ž‰–b¬‘Ì)
2.45GHz‚̃}ƒCƒNƒ”g@6W/kg‚ðˆó‰ÁA120•ªŒã‚Ƀ}ƒCƒNƒ”g‚̉e‹¿‚ª‚Å‚½B
‚T) J. Bruno et al:
Synthesis of Diazoluminomelanin (DALM) in@HL-60 Cells for Possible Use as a
Cellular-Level Microwave Dosimeter
2.45GHz 0-20W‚ŃeƒXƒgB@“ï‰ð‚Å—‰ð‚Å‚«‚¸B
‚U) S. Gold et al:
Exposure of Simian
Virus-40-Tranformed Human@Cells to Magnetic Fields Results in Increased Levels of T-Antigen
mRNA and Protein.
60Hz 8ƒ}ƒCƒNƒƒeƒXƒ‰Peak‚Å×–E‚ɉe‹¿‚ª‚Å‚½B@(‚©‚È‚è”÷Žã‚ÈŽ¥ŠE‚Å‚à×–EŽÀŒ±‚ʼne‹¿‚ª‚Å‚½j
‚V)
J. L. Borghesi et al:
Development and
Evaluation of a Location-Specific Wire Code
Wertheimer-Leeper‚̃ƒCƒ„ƒR[ƒh‚Í‚»‚ê‚È‚è‚̈Ӗ¡‚ðŽ‚Á‚Ä‚¢‚邪A—LˆÓ‚ȃIƒbƒY”ä‚Æ‚µ‚Ä‚PD‚X‚ð’´‚¦‚錤‹†‚ðs‚È‚¤ˆ×‚É‚ÍAÇ—á‚S‚Q‚OˆÈãA‘ÎÆ‚W‚S‚OˆÈオ•K—v‚Æ‚È‚éB
i“Á’è‚ÌŠà‚Å‚±‚ꂾ‚¯‚ÌÇ—á‚ðW‚߂邱‚Æ‚ª‚Å‚«‚é‚©Hj
‚W)
C. L. Kowalczuk et al:
Effects of Prenatalio¶‘Oj Exposure@to 50 Hz Magnetic Fields on Development in Mice. 1. Implantation
Rate and Fetal Development.
50Hz 20mT‚ÌŽ¥ŠE‚ð‘l‚Ée‘l‚Ɉó‰ÁA¶‚Ü‚ê‚Ä‚«‚½Žq‘l‚É‚µ‚͕ω»‚ªŒ»‚ꂽ‚ªAŒ‹˜_‚Æ‚µ‚Ä‚ÍŽ¥ŠE‚̉e‹¿‚ª‚È‚¢B
‚±‚ÌŒ¤‹†‚Í–ÓŒŸ–@iƒuƒ‰ƒCƒ“ƒhj‚ŃeƒXƒg‚ðs‚È‚Á‚Ä‚¢‚éB
‚X) Z. Sienkiewicz
et al:
Effects of Prenatal
Exposure to 50 Hz@Magnetic Fields on Development in Mice. ‡UDPostnatali¶Œãj Development and Behavior.
‚W‚Æ“¯‚¶Œ¤‹†A¶Œã‚Ì”ˆç‚âs“®‚Ȃǂɉe‹¿‚ÍŒ©‚ç‚ê‚È‚¢B
BEMS˜_•¶Ž‚ÉŒfÚ‚³‚ꂽ“dŽ¥”g‚ÌŒ¤‹†F
ƒAƒƒŠƒJ‚̶‘Ì“dŽ¥‹CŠw‰ï‚̘_•¶Ž‚X‚U”N‘æ‚R†‚ð“Ç‚Ý‚Ü‚µ‚½B@‚»‚Ì“à—e‚ðŠÈ’P‚ÉЉ‚Ü‚·B‰p•¶‚Ìê–å˜_•¶‚ð—‰ð‚Å‚«‚½•”•ª‚ðЉ‚Ü‚·B
1j@D. Miller ;
Miniature-Probe Measurements of Electric Fields induced by 60 Hz Magnetic
Fields in Rats.
‚Q‚‚‚Ì‹óŠÔ•ª‰ð”\‚ð‚à‚ƒAƒ“ƒeƒi‚ð쬂µ‚ÄA‘l‚ÉŠO•”‚©‚ç‚U‚O‚g‚šA‚Pƒ~ƒŠƒeƒXƒ‰‚ÌŽ¥ŠE‚ðˆó‰Á‚µ‚½Žž‚ÉA‘Ì“à‚É—U“±‚³‚ê‚é“dŠE‚ðŽÀ‘ªB@
ƒtƒ@ƒ“ƒgƒ€“™‚ł̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚Å“¾‚ç‚ꂽ—˜_“I‚È“dŠE’l‚É”ä‚ׂÄAŠT‚µ‚Ĭ‚³‚¢’l‚Å‚ ‚Á‚½B
‚±‚ê‚Í‘l‚Ì‘Ì“à‚Ì\¬‘Ÿ•¨‚ª“d‹C“I‚É‘S‚‹Ïˆê‚È“Á«‚Å‚Í‚È‚¢‚±‚Æ‚É‹Nˆö‚·‚é‚ÆŽv‚í‚ê‚éB@
i‚±‚Ì‚±‚Ƃ̓Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚Ì•û‚ªŒµ‚µ‚o‚é‚Ì‚ÅAƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚³‚¦‚«‚¿‚ñ‚Æs‚È‚¦‚ÎAl‘Ì“™‚̉e‹¿‚Í‘z’è‚Å‚«‚é‚Æ‚¢‚¤‚±‚ÆH‚©‚à‚µ‚ê‚È‚¢Bj@
2j. B. Wilson et al;
Magnetic Field Characteristics of Electric Bed-heating Devices@
“d‹C–Ñ•z“™‚ÌŽ¥ŠE‹“x‚𑪒èAˆÈŠO‚ÆŽ¥ŠE‹“x‚Í’á‚¢B@
‘ª’è—á‚Æ‚µ‚Ä]—ˆŒ^‚Ì“d‹C–Ñ•z‚Å‚Í0E5‚©‚ç2E5‚‚f‚ÌŠÔ‚ðí‚É•Ï“®‚µ‚ÄA‚»‚Ìd‚Ý•t‚¯‚ð‚µ‚½•½‹Ï’l‚Í1E12‚‚fB@
’á“dŽ¥ŠEƒ^ƒCƒv‚ÆŒ¾‚í‚ê‚éVŒ^‚Ì“d‹C–Ñ•z‚Íí‚É–ñ‚P‚‚f’ö“x‚ð˜R‰k‚µ‚ÄA‚»‚Ìd‚Ý•t‚¯‚ð‚µ‚½•½‹Ï’l‚Í1E12‚‚f‚Æ‚¢‚¤—ႪЉ‚ê‚Ä‚¢‚éB@
‚±‚ê‚ç‚̃f[ƒ^‚̓Jƒ‹ƒtƒHƒ‹ƒjƒA‚̉uŠw’²¸i‚±‚¤‚µ‚½“d‹C–Ñ•z“™‚ªˆÙí”DP‚ÆŠÖŒW‚µ‚Ä‚¢‚é‚©‚ÌŒ¤‹†j‚ÌŠî‘bŽ‘—¿‚Æ‚È‚éB@
i“d‹C–Ñ•z‚Í“dŠE‚Í‹‚¢‚ªŽ¥ŠE‚ÍŽã‚¢‚Ì‚Å‚Í‚È‚¢‚©‚ÆŽ„‚àŠ´‚¶‚Ä‚¢‚Ü‚µ‚½‚ªA‚Ü‚³‚É‚»‚Ì’Ê‚è‚̃f[ƒ^‚Å‚µ‚½B‚±‚¤‚µ‚½Ž¥ŠE‚Ì‘ª’èƒf[ƒ^‚ðŠî‚É‚µ‚½”DP‚Ƃ̉uŠw’²¸Œ‹‰Ê‚ªŒö•\‚³‚ê‚é‚Ì‚ð‘Ò‚¿‚Ü‚µ‚傤Bj@
3j Z. Sienkiewice et al;@
Acute Exposure to Power-Frequency@Magnetic Fields Has
No Effect on the Acquisition of Spatial Learning Task By Adult Male Mice.@
‘l‚ðŽg‚Á‚ÄA”]‚Ì“®ì‚ւ̉e‹¿‚ðŒ¤‹†B ŒP—ûì‹Æ‚ª‚T‚O‚g‚šŽ¥ŠE‚É‚æ‚è‰e‹¿‚ª‚ ‚é‚©‚𒲸B@
‚Tƒ}ƒCƒNƒƒeƒXƒ‰i50ƒ~ƒŠƒKƒEƒXj‚©‚ç‚Tƒ~ƒŠƒeƒXƒ‰i50ƒKƒEƒXj‚Ì–\˜I‚ł͈Ùí‚Í‚È‚¢B@
4j.J. L. Kirschvink;@
Microwave Absorption by Magnetite,@a possible Mechanism
for Coupling Nonthermal Levels of Radiation to Biological System@
l‘Ì‚Ì”]‚Ì’†‚Ƀ}ƒOƒlƒ^ƒCƒg‚ª‚ ‚邱‚Æ‚ðŒ©‚¢‚¾‚µ‚½Œ¤‹†ŽÒ‚É‚æ‚é’ñˆÄB@
ƒ}ƒCƒNƒ”g‚̓}ƒOƒlƒ^ƒCƒg‚ª‚ ‚ê‚΂»‚±‚Å‘òŽR‚Ì“d—Í‚ð‹zŽû‚·‚é@
iŒg‘Ñ“d˜b‚ÌŽg—pŽü”g”‚ðŠÜ‚Þ0E5[10‚f‚g‚š‚Å‚Í“Á‚Él—¶‚ª•K—vjB
]—ˆŒ¤‹†‚Í‚±‚Ì“_‚ðl—¶‚µ‚Ä—ˆ‚È‚©‚Á‚½B@
”äŠr“I”÷Žã‚ȃ}ƒCƒNƒ”g“d—̶͂‘̉e‹¿‚̓}ƒOƒlƒ^ƒCƒg‚ª‹Nˆö‚·‚é‚©‚à‚µ‚ê‚È‚¢A¡ŒãŒ¤‹†‚µ‚Ä‚¢‚‚ׂ«‚Å‚ ‚éB@
—Ⴆ‚Α–Ž¥«‹Û‚Æ‚æ‚΂êƒ}ƒOƒlƒ^ƒCƒg‚ð‘Ì“à‚ÉŠÜ‚Þ”÷¶•¨‚ÆAŽ¥‹C‚ðŠÜ‚Ü‚È‚¢”÷¶•¨‚Ƀ}ƒCƒNƒ”g‚ðˆó‰Á‚µ‚ÄA‚c‚m‚`“™‚̕ω»‚𒲂ׂ½‚è‚·‚ê‚ÎA‘Ì“à‚̃}ƒOƒlƒ^ƒCƒg‚ª“dŽ¥”g‰e‹¿‚ÌŠî‚É‚È‚Á‚Ä‚¢‚é‚©”Û‚©‚ª‚í‚©‚é‚Í‚¸B@
5.j C. K. Chou et al;@
Radio Frequency Electromagnetic Exposure: Tutorial Review on Experimental
Dosimetry.
‚q‚eŽü”g”‚Ì“dŽ¥”g–\˜I‚ÉŠÖ‚·‚郌ƒrƒ…[B@
‘l‚Ȃǂ̬“®•¨‚É“dŽ¥ŠE‚ðˆó‰Á‚µ‚ĉe‹¿“x‚̃eƒXƒg‚ð‚·‚é‚±‚Æ‚ª‘½‚¢B@
‚±‚Ìê‡A‘l‚ÌŽp¨E“®‚«‚É‚æ‚Á‚Ä‘l‚̎󂯂é‚r‚`‚q‚Í“dŽ¥ŠE‚Æ‘ÌŽ²‚Æ‚ÌŠÖŒW‚Å‘å‚«‚•Ï“®‚µA20”{‚à•Ï‰»‚·‚éA@
ˆê’è‚Ì–\˜I—Ê‚ð—^‚¦‚邱‚Æ‚Í•s‰Â”\‚É‹ß‚¢Bˆê’è‚Ì–\˜I—Ê‚É‚·‚éˆ×‚É‘l‚ÌŽp¨‚ðS‘©‚·‚ê‚ÎA‚±‚ÌS‘©‚ªƒXƒgƒŒƒX‚Æ‚È‚Á‚Ăǂ̂悤‚ȉe‹¿‚ª‚Å‚é‚©‚í‚©‚ç‚È‚¢B@
‚±‚¤‚µ‚½“_‚àŒ¤‹†Žž‚É’ˆÓ‚·‚ׂ«B@
Å‹ß‚ÌŒ¤‹†‚É‚æ‚Á‚ÄAœ‚Ì“d‹C“I“Á«‚ª]—ˆ‚Ì’l‚ƈقȂÁ‚Ä‚¢‚邱‚Æ‚ª‚í‚©‚Á‚Ä‚«‚½B@
]—ˆ‚Ì”Žš‚Å‚Í‚q‚e”g‚ɑ΂·‚éƒhƒVƒƒgƒŠ[‚ÌŒ¤‹†Œ‹‰Ê‚ªA‰ß‘å‚ÉŒµ‚µ‚•]‰¿‚³‚ê‚Ä‚¢‚½‰Â”\«‚à‚ ‚éB‚ÆB@
iŒg‘Ñ“d˜b“™‚̈À‘S«‚ÌŒ¤‹†‚ÉŠÖ˜AAí‚ÉÅV‚ÌŒ¤‹†‚Å‚Í]—ˆ‚Ì–\˜IŠî€‚©‚ç‚æ‚茵‚µ‚¢•ûŒü‚ɉü³‚³‚ê‚éŒXŒü‚É‚ ‚邪A
‚±‚ÌŒ¤‹†‚É‚æ‚ê‚ÎAŠÉ˜a‚³‚ê‚é‰Â”\«‚àŽc‚µ‚Ä‚¢‚éA‚±‚Æ‚É‚È‚éBj@@
6j Jon Reitan et al;@
High-Voltage Overhead Power lines in Epidemiology: Patterns of Time Variations
in Current Load and Magnetic Fields.@
ƒmƒ‹ƒEƒF[‚ÌŒ¤‹†B‘—“dü‚Ì‘—“d“d—¬‚Ì”NEŒŽE“ú‚É‚æ‚é•Ï“®‚Í‘å•Ï‘å‚«‚¢B@
ƒIƒXƒŽs‘S‘Ì‚Ì“d—ÍÁ”ï‚̉ߋŽ‚Ì„ˆÚi‰EŒ¨ã‚ª‚è‚É’P’²‚É‘‰Áj‚ɑ΂µ‚ÄA¡‰ñ‚Ì’²¸‚ÅŽæ‚è‚ ‚°‚½ŽR‚Ì•û‚É‚ ‚锓dŠ‚©‚ç‚Ì‘—“dü‚ÆAì‚Ì•û‚É‚ ‚锓dŠ‚©‚ç‚Ì‘—“dü‚Ì‚»‚ꂼ‚ê‚Ì‘—“d“d—¬‚Ì„ˆÚ‚ÍA‚ ‚é”͈͂őŒ¸‚ðŒJ‚è•Ô‚µ‚Ä‚¢‚éB@
‰uŠw’²¸‚ŃXƒ|ƒbƒg“I‚ÉŽ¥ŠE‚𑪒肵‚Ä‚àA•K‚¸‚µ‚à‘S‘Ì‘œ‚ð”cˆ¬‚Å‚«‚È‚¢B@
–éŠÔ‚Ì‘—“d“d—¬‚Í’‹ŠÔ‚É”ä‚ׂĒႢA‚·‚È‚í‚¿–éŠÔ‚͘R‰kŽ¥ŠE‚ª’ቺ‚·‚éB@
Ž¥ŠE‚ªƒƒ‰ƒgƒjƒ“‚̗ʂɉe‹¿‚µ‚Ä‚¢‚é‚Æ‚¢‚¤Œ¤‹†‚à‚ ‚邪A‚±‚¤‚µ‚½–éŠÔ‚ÌŽ¥ŠE—ʂ̒ቺ‚Æ‚¢‚¤–Ê‚Å‚à‚Ý‚é•K—v‚ª‚ ‚éB@
7j@Qing-Yu Fan et al ;
Preliminary Report on Treatment of Bone Tumors with Microwave-induced
Hyperthermia@
‚Q‚S‚T‚O‚l‚g‚š‚̃}ƒCƒNƒ”g‚Ìœ‚ÌŠà‚ɑ΂·‚éˆã—Éž—p‚Å—Ç‚¢¬Ñ‚ð”[‚ß‚½B@
8j E. Khizhnyak et al;@
Temperature Oscillations in Liquid@Media Caused by
Continuous (Non-modulated) Millmeter Wave-length
Electromagnetic irradiation. @
‚T‚W[‚V‚W‚f‚g‚š‚Æ‚¢‚¤ƒ~ƒŠ”g‚ð”|—{‰t‚ÉÆŽË‚µ‚½‚Æ‚±‚ëA”|—{‰t‚̉·“x㸂͒Pƒ‚Å‚Í‚È‚Aã¸E‰º~‚ðŒJ‚è•Ô‚·”UŒ»Û‚ð
’悵‚½‚è‚·‚éꇂª‚ ‚邱‚Æ‚ª‚í‚©‚Á‚½B@
“d—Í‚âŽü”g”‚Ì‘‹Œø‰Ê‚©‚à‚µ‚ê‚È‚¢‚Æ‚¢‚í‚ê‚Ä‚¢‚éŽÀŒ±Œ‹‰Ê‚Í‚±‚¤‚µ‚½‰·“x㸂̈Ù킳‚É‹Nˆö‚·‚é‚©‚à‚µ‚ê‚È‚¢B@
9j@J. Blondin et al;@
Human Perception of Electric Fields and Iron Currents Associated with
High-Voltage DC Transmission Lines.@
ƒJƒiƒ_‚ÅŒv‰æ‚³‚ê‚Ä‚¢‚é’¼—¬‚Ì‚ˆ³‘—“dü‚Ì“dŠE‚ÉŠÖ‚µ‚ÄAƒ{ƒ‰ƒ“ƒeƒ@‚ð•å‚Á‚Ä‚Ç‚Ì’ö“x‚Ì“dŠE‹“x‚Å“dŠE‚ðŠ´’m‚·‚é‚©‚𒲸A@
‘—“dü‚©‚ç‚̃CƒIƒ““d—¬‚àŠÖŒW‚µ‚Ä‚‚邱‚Æ‚ª‚í‚©‚Á‚½B
Š´‚¶ˆÕ‚¢l‚Í‚P‚O‚‹‚u^‚’ö“x‚ÅŠ´‚¶‚éB@
Š´‚¶‚È‚¢l‚Í‚T‚O‚‹‚u^‚‚Å‚àŠ´‚¶‚È‚¢BŒÂ‘Ì·‚ª‘å‚«‚¢B@
‚±‚ÌŒ¤‹†¬‰Ê‚Í«—ˆ‚̃Jƒiƒ_‚Å‚Ì’¼—¬‚ˆ³‘—“dü‚ÌŒšÝ‚ɖ𗧂Ăç‚ê‚éB@
10j R. Adair;@
Didactic Discussion of Stochstic@Resonance Effects and
Weak Signals.
”÷Žã‚È“dŽ¥ŠE‚̉e‹¿‚ªAŒ¤‹†‚É‚æ‚Á‚Ä‚Í‚È‚ºŒŸo‚³‚ꂽ‚èAŒŸo‚³‚ê‚È‚©‚Á‚½‚è‚·‚é‚Ì‚©‚ÉŠÖ‚·‚鉼à‚Ì’ñ¥‚ÆŽv‚í‚ê‚邪A“ï‰ð‚Å—‰ð‚Å‚«‚¸AЉî‚Å‚«‚Ü‚¹‚ñB@
11j E. Elekes et al;@
Effect on the Immune System of Mice Exposed Chronically to 50 Hz
Amplitude-Modulated 2.45 GHz Microwaves.
50Hz‚Ì‹éŒ`”g‚Å•Ï’²‚µ‚½2E45GHz‚̃}ƒCƒNƒ”g‚ð‘l‚ÉÆŽËB@
0E1mW/cm2i–ñ20V/m‚Ì“dŠE‹“xj‚Æ‚¢‚¤”äŠr“I’჌ƒxƒ‹‚ÌÆŽË‚Å‚ ‚邪AƒƒX‘l‚ł͈Ùí‚Í–³‚©‚Á‚½‚ªAƒIƒX‘l‚Å‚ÍPFC/Spleen‚ɉe‹¿‚ªo‚Ä‚¢‚éB@
”äŠr“I’á‚¢ƒ}ƒCƒNƒ”g‚łඑ̉e‹¿‚ª‚ ‚é‚Æ‚¢‚¤•ñB@
(‚±‚Ì•ñ‘‚Å‚Ì”’l‚ð‚Ý‚ê‚ÎA–{—ˆ‚Ù‚Ú•Ï“®‚Ì‚È‚¢’l‚Å‚ ‚é‚Í‚¸‚̃Rƒ“ƒgƒ[ƒ‹i‘ÎÆŒQj‚̃f[ƒ^‚ª‚Q”{ˆÈã‚É•Ï“®‚µ‚Ä‚¢‚é‚Ì‚ÅAŽÀŒ±Žè–@“™‚É‹^–₪Žc‚éB@–”@‘l‚̃IƒX‚ƃƒX‚Å‚È‚º‰e‹¿‚ªo‚½‚èAo‚È‚©‚Á‚½‚è‚·‚é‚Ì‚©‚í‚©‚ç‚È‚¢B)@
12j Z. Sciekiewicz et al@
;Prenatal Exposure to a 50 Hz Magnetic@Field has No
Effect on Spatial Learning in Adult Mice.@
‚T‚O‚g‚š‚T‚OƒKƒEƒX‚̳Œ·”gŽ¥ŠE‚ð‘l‚ÉÆŽËB@
”]‚Ì‹@”\‚Ö‚ÌŽ¥ŠE‰e‹¿‚ðŠwK‹@”\‚̕ω»‚ð—˜—p‚µ‚Ä’²¸B@Œ‹‰Ê‚Í–â‘肪–³‚©‚Á‚½B
(‚R‚à‚P‚Q‚à“¯‚¶Œ¤‹†ŽÒ‚Ì•ñ‚Å‚·BŽ¥ŠE‚É‚æ‚郃‰ƒgƒjƒ“‚̗ʂւ̉e‹¿‚ª•ñ‚³‚ê‚Ä‚¢‚Ü‚·‚ªA”]_ŒoŒn‚É‚Í‚T‚OƒKƒEƒX’ö“x‚̌𗬎¥ŠE‚ł͉e‹¿‚ªŒ»‚ê‚È‚¢‚悤‚Å‚·B)@
ì¬F1997-4-30@WEBŒöŠJG2014-2-24
1j M. Yasui et al: Carcinogenicity Test of 50
Hz Sinusoidal Magnetic Field in Rats.
OECD‚É‚æ‚Á‚Ä‹K’肳‚ꂽ•û–@‚ÅA50Hz³Œ·”g‚̌𗬎¥ŠE‚ª”ƒKƒ“«‚ð—L‚·‚é‚©”Û‚©‚ÌŒŸØ‚ðs‚Á‚½B@
5ƒKƒEƒXA50ƒKƒEƒX‚ÌŽ¥ŠE‚ð5°109T‚ɂ킽‚Á‚ălƒYƒ~‚É”˜˜IB
ƒVƒƒƒ€”˜˜I‚Æ”äŠr‚µ‚ÄA”ƒKƒ“«‚ÍŒŸoo—ˆ‚È‚©‚Á‚½B
@50ƒKƒEƒX’ö“x‚̌𗬎¥ŠE‚ÍA”ƒKƒ“«‚Í‚È‚¢‚ÆŒ¾‚¦‚éB
2) V. Sollazzo et al: Response
of Human MG-63 Osteosarcoma Cell Line and Human Osteoblast-Like Cells to Pulsed
Electromagnetic Fields.
@ƒs[ƒN’l23ƒKƒEƒXAŒJ‚è•Ô‚µŽü”g”75HzAƒpƒ‹ƒX•1¥3ms‚ÌŽ¥ŠE‚ð×–E‚Ɉø‰ÁBƒpƒ‹ƒXŽ¥ŠE‚Æ×–E‚ÌŠÖŒW‚ÍA”|—{ðŒ‚É‚æ‚Á‚Ä’˜‚µ‚•Ï‰»‚·‚éB
‚Ü‚½Žg—p‚µ‚½×–E‚ÌŽí—Þ‚É‚æ‚Á‚ÄA‰e‹¿“x‚Í‘å‚«‚•Ï‰»‚·‚éB@Œp‘±Œ¤‹†‚ª•K—vB
3) G. P. Pessina et al: Short Cycles of Both Static and
Pulsed Electromagnetic Fields Have No Effect on the Induction of Cytokineses by Peripheral Blood Mononuclear Cells.
’¼—¬Ž¥ê30ƒKƒEƒXAƒpƒ‹ƒXŽ¥êiƒs[ƒN30ƒKƒEƒXAŒJ‚è•Ô‚µŽü”g”50HzAƒfƒ…[ƒeƒB”ä0¥4A—§‚¿ã‚ª‚è120ƒiƒm•bA—§‚¿‰º‚ª‚è100ƒ}ƒCƒNƒ•bj ‚ð––½ŒŒ—R—ˆ‚Ì×–E‚Ɉø‰ÁB
ˆø‰Á‚µ‚½Ž¥ŠE‚É‚æ‚Á‚Ä×–E‚̈Ùí‘B‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B
4) J. D. Harland et al: Environmental magnetic Fields
Inhibit the Antiproliferative Action of Tamoxifen and Melatonin in a Human
Breast Cancer Cell Line.
@‰ß‹Ž‚ÌŒ¤‹†‚Ńƒ‰ƒgƒjƒ“‚Ì‘¶Ý‚µ‚È‚¢ðŒ‚Å‚ÍAŽ¥ŠE‚Í×–EiMCF°7j‚̬’·‚ɉe‹¿‚ð—^‚¦‚È‚©‚Á‚½B
@60Hz12ƒ~ƒŠƒKƒEƒX‚Æ‚¢‚Á‚½’á‚¢ƒŒƒxƒ‹‚ÌŽ¥ŠE‚Å‚ÌŒ¤‹†Aƒƒ‰ƒgƒjƒ“‚ð‰Á‚¦‚½×–EŽÀŒ±‚Å‚ÍAŽ¥ŠE‚É‚æ‚Á‚ăƒ‰ƒgƒ“ƒjƒ“‚Ì“®‚«‚ª—}§‚³‚ꂽB
@‚±‚ÌŒ¤‹†‚©‚çAŠÂ‹«‚É‚ ‚鎥ŠE‚ÍA–ò•i‚⃃‰ƒgƒjƒ“‚Ì‹@”\‚ɉe‹¿‚ð—^‚¦‚Ä‚¢‚é‰Â”\«‚ªŽ¦´‚³‚ê‚éB
5) E. D. Mantiply et al:
Summary of Measured Radio Frequency Electric and Magnetic Fields (10 kHz to 30
GHz) on the General and Work Environment.
@FX‚Ȋ‹«‚Å‚Ì“dŽ¥ŠE‚Ì”˜˜IðŒ‚ð“Z‚ß‚½B
6) P. J. Riu et al: A Thermal
Model for Human Thresholds of Microwave-Evoked Warmth Sensations.
@10GHzˆÈã‚̃}ƒCƒNƒ”g‚É‚È‚ê‚ÎAl‘Ì‚Ì•\–ʂ̉·“x㸂ªA“dŽ¥”gŒŸ’m‚ÌŒˆ‚ߎè‚É‚È‚éB
7) I. L. Beale, et al: Psychological Effects of Chronic Exposure
to 50 Hz Magnetic Fields in Humans Living Near Extra-High-Voltage Transmission
Lines.
NZ‚É‚¨‚¯‚é‘—“dü‚Ì‹ß‚‚ÉZ‚Þl‚ð‘ÎÛ‚Æ‚µ‚½Œ¤‹†A‘—“dü—R—ˆ‚ÌŽ¥ŠEˆÈŠO‚ÌZ–¯‚Ì“dŽ¥”g”˜˜IAEê‚Å‚Ì“dŽ¥”g”˜˜I‚Í–³Ž‹‚µ‚½B
FX‚ȶ‘Ì‹@”\‚̃eƒXƒg‚Å‚ÍŽ¥ŠE‚Ƃ̉e‹¿‚ÍŒ©‚ç‚ê‚È‚¢‚ªAŽ©ŒÈ”»’è‚É‚æ‚鎿–â•\“™‚̉ðÍŒ‹‰Ê‚Å‚ÍA‘—“dü—R—ˆ‚ÌŽ¥ŠE‚Æ‚ÌŠÖ˜A‚ªŒ©‚¦‚éB
8) I. Ihrig et al: Alterations
of Intercellular Calcium Concentration in Mice Neuroblastoma Cells by
Electrical Field and UVA.
‰ß‹Ž‚É×–E‚É“dŽ¥”g‚ðˆø‰Á‚µ‚½Žž‚Ì×–E‚©‚ç‚̃Jƒ‹ƒVƒEƒ€—¬o‚ÌŒ¤‹†•ñ‚ªs‚í‚ê‚Ä‚¢‚éB
‚±‚ê‚ç‚ÌŽÀŒ±‚ÍA“dŽ¥”g‚̉e‹¿‚Å‚Í‚È‚AŽÀŒ±‚ÉŽg—p‚µ‚½ŒuŒõƒ‰ƒ“ƒv‚ÌŽ‡ŠOü‚̉e‹¿‚̉”\«‚ª‘å‚«‚¢B
1DM. Repacholi et al: Interaction
of static and extremely low frequency electric and magnetic fields with living
systems: health effects and research needs.
WHO‚Ì‘Û‚d‚l‚eƒvƒƒWƒFƒNƒg‚̃Œƒpƒ`ƒ‡ƒŠ‚ªŠT—v‚ð“Z‚ß‚Ä‚¢‚éB@–{•¶‚¾‚¯‚Å22ƒy[ƒW‚Ì‘åìB
’áŽü”g“dŽ¥ŠE‚ÉŠÖ‚µ‚Ä‚ÍA‹‚¢“dŽ¥ŠE‹“x‚ł͉e‹¿‚ª‚ ‚邪A’á‚¢ƒŒƒxƒ‹‚ⶊˆŠÂ‹«‰º‚É‘¶Ý‚·‚é”äŠr“I’á‚¢ƒŒƒxƒ‹‚Ì“dŽ¥ŠE‚̉e‹¿‚ÍA‚Ü‚¾ŠmŒÅ‚½‚é‚à‚Ì‚ª‚È‚¢B
’჌ƒxƒ‹‚Ì’áŽü”g“dŽ¥ŠE‚ÉŠÖ‚µ‚Ä‚ÍAÄŒ»ŽÀŒ±‚ðs‚¤•K—v‚Ì‚ ‚é‚à‚Ì‚à‚ ‚éB
ÃŽ¥ŠE‚ÉŠÖ‚µ‚Ä‚Í2ƒeƒXƒ‰ˆÈ‰º‚Ì‹“x‚Å‚ÍAŒ’N‰e‹¿‚Í‚È‚¢B
2DH. Okano et al: Biphasic effects of static magnetic
fields on cutaneous microcirculation in rabbits
1mTi10ƒKƒEƒXj‚ÌÃŽ¥ŠE‚ðƒEƒTƒM‚ÌŽ¨‚É‚ ‚Ä‚½B–•ÁŒŒŠÇ‚ÌŒŒ—¬‚ɕω»‚ªŒ»‚ꂽB
i‚±‚ê‚̓rƒbƒvƒGƒŒƒLƒoƒ“‚ÌŒø‰Ê‚̘_Ø‚Æ‚È‚éHƒrƒbƒvƒGƒŒƒLƒoƒ“‚ÌŠÖŒWŽÒ‚àŽQ‰Á‚µ‚½Œ¤‹†j
3DF. Cara et al: Different effects of microwave energy and
conventional heat on the activity of a thermophillic
B-galactosidase from Bacillus acidocaldarius
’Pƒ‚È”M‚ð‰Á‚¦‚½Žž‚ÆA“¯‚¶‰·“x‚É‚È‚é‚悤‚ɧŒä‚µ‚Ä10.4GHz‚̃}ƒCƒNƒ”g“dŠE‚ðˆó‰Á‚µ‚½Žž‚Æ×–E‚ɕω»‚ª‚ ‚é‚©‚𒲂ׂ½B
“dŽ¥ŠE‚É‚æ‚éSAR‚Í1.1W/kg‚Æ1.7W/kg‚Å‚ ‚éB
“dŽ¥ŠE‚̉e‹¿‚ªŒ»‚ꂽB
i“dŽ¥ŠE‚Å”M‚ª”¶‚µ‚Ä‚à‚»‚ê‚ð‹§“I‚É—â‹p‚µ‚ĉº‚°‚Äs‚¤ƒeƒXƒg‚ÅA”ñ”MŒø‰Ê‚ÌŽÀŒ±j
4DM. Mattei et al: Correlation
between pulsed electromagnetic fields exposure time and cell proliferation
increase in human osteosarcoma cell lines and human normal osteoblast cell in
vitro.
2.3mT‚ÌŽ¥ŠEA75Hz‚ÌŒJ‚è•Ô‚µŽü”g”Aƒpƒ‹ƒXŽ¥ŠE‚ð×–E‚Ɉó‰ÁB×–E‚ɉe‹¿‚ª‚Å‚½B
i‚±‚ÌŽž‚ÌdB/dt‚Í‚Ç‚Ì’ö“x‚©?@ƒpƒ‹ƒXŽ¥ŠE‚Ì—§‚¿ã‚ª‚è‚Æ—§‚¿‰º‚ª‚è‚ÌŽž‚ÌŽ¥ŠE‚ÌŽžŠÔ•Ï‰»‚ÅA×–E‚É‚Ç‚Ì’ö“x‚Ì—U“±“d—¬‚ª—¬‚ꂽ‚Ì‚©?@˜_•¶‚É‚Í‚»‚Ì‹LÚ‚ª‚È‚¢Bj
5DW. Pickard et al: Simplified model and measurement of
specific absorption rate distribution in a culture flask within a transverse
electromagnetic mode exposure system.
“dŽ¥ŠE–\˜I‚É‚ ‚½‚Á‚ÄAƒtƒ‰ƒXƒR‚â×–E‚ð“ü‚ꂽ—n‰t‚È‚Ç‚Ì“d‹C“I‚È“Á«‚ð\•ª‚ɉÁ–¡‚µ‚Ä‚Ç‚Ì’ö“x‚Ì“dŽ¥ŠEASAR‚ªˆó‰Á‚³‚ê‚Ä‚¢‚é‚©‚ð•]‰¿‚µ‚È‚¢‚ÆA‚¢‚¯‚È‚¢@‚Æ‚¢‚¤‚±‚Æ‚ð’ñ¥B
“ï‰ð‚Å—‰ð‚Å‚«‚¸B
6DM. Bier et al: Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells.
’´“ï‰ðA‰½‚̘_•¶‚©‚à‚í‚©‚ç‚È‚¢B
Electroporesg‚ÍŽ«‘‚ÉÚ‚Á‚Ä‚¢‚È‚AˆÓ–¡•s–¾B
‚RD‚a‚‰‚@‚d‚Œ‚…‚ƒ‚”‚’‚‚‚‚‡‚Ž‚…‚”‚‰‚ƒ‚“@‚u‚‚ŒD‚Q‚O@‚m‚D‚W ‚c‚d‚bD ‚P‚X‚X‚X”N ˜_•¶Ž‚ÌŠT—v
1jH. A. Kues at al:
Absence of ocular effects after either single or repeated exposure to 10mW/cm2
from a 60 GHz CW source
ƒEƒTƒM‚Ì–Ú‚É60‚f‚g‚š‚Ì“dŽ¥ŠE‚ð–\˜IA•Ð–Ú‚É“dŽ¥”gA‘¼•û‚̓Rƒ“ƒgƒ[ƒ‹‚Æ‚µ‚Ä”äŠr‚Ì‘ÎÛ‚Æ‚µ‚½B Œ‹‰Ê‚Æ‚µ‚Ä‚ÍA‰e‹¿‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B
‚Q) M. Crasson et al: @
50 Hz magnetic fields exposure influence on human performance and pyschophysiological parameters: two double blind exposure
studies.
ƒqƒg‚É‚T‚O‚g‚š@‚P‚O‚OƒÊ‚s‚ÌŽ¥ŠE‚ðˆó‰ÁA“ª•”‚ÉŽ¥ŠE‚ðˆó‰ÁB “ñd–ÓŒŸ–@‚ÅŽŽŒ±B@“¯Žž‚É”]‚â¸_‚Ì‹@”\‚𑪒è‚Å‚«‚éFX‚ȃeƒXƒg‚ðs‚¢AŽ¥ŠE‚Ì–\˜I‚Å‚»‚¤‚µ‚½‹@”\‚ɉe‹¿‚ªo‚½B@@i“ï‰ð‚Å‹@”\ƒeƒXƒg‚Ì•û–@‚È‚Ç‚ª‚æ‚‚í‚©‚ç‚È‚¢Bj@
‚R) E. Schienfold et al:
Magnetic fields exposure assessment: A comparision of
Various Methods.
Long Island ‚ÌŽ¥ŠE‚Æ“û‚ª‚ñ‚ÌŠÖŒW‚Ì—\”õŒ¤‹†B@31–¼‚Ì“û‚ª‚ñ‚É‚È‚Á‚Ä‚¢‚È‚¢—«‚ð‘ÎÛ‚ÉAŽ©‘î‚Å‚Ì24ŽžŠÔŽ¥ŠE‘ª’èAƒƒCƒ„[ƒR[ƒhAÚ’n“d—¬A24ŽžŠÔŒÂl–\˜I‚Ȃǂ𒲸B@
’˜ŽÒ‚Í24ŽžŠÔŒÂl–\˜I‚ÆŽ©‘î‚Å‚ÌŽ¥ŠE‹“x‚É‘ŠŠÖ‚ª‚Æ‚ê‚Ä‚¢‚é‚Æ‚¢‚Á‚Ä‚¢‚éB@
i‚µ‚©‚µAŽÀۂ̃f[ƒ^‚ðŒ©‚é‚ÆŽ„‚Ì–Ú‚É‚Í‘ŠŠÖ‚Í”–‚¢‚ÆŒ©‚¦‚éBj@‰Æ’ë‚Å‚ÌŽ¥ŠE‚É‚ÍAŒð—¬“dŒ¹‚©‚çÚ’nü‚Ö˜R‰k‚·‚é“d—¬’l‚ª‘å‚«‚ȉe‹¿‚ð‚à‚Á‚Ä‚¢‚éB@‚±‚ÌÚ’nü“d—¬‚ÍAŽ¥ŠE‚Æ“û‚ª‚ñ‚ÌŒ¤‹†‚É·‚èž‚ÞB@
‚S) K. W. Linz et al:@
Membrane potential and currents of isolated heart muscle cells exposed to
pulsed radio frequency fields. @
×–EƒŒƒxƒ‹‚ÌŒ¤‹†B900MHz‚Æ1800MHz‚̃}ƒCƒNƒ”giŒg‘Ñ“d˜b‚Ì“d”g‚ð‘z’èjA“d—Í‚Í80mW/kg‚©‚ç880mW/kgB’ZŽžŠÔ–\˜I‚Å‚ ‚éB@”ñ”MŒø‰Ê‚̗̈æ‚ð‘_‚Á‚½Œ¤‹†B@
Œ‹‰Ê‚Æ‚µ‚Ä‚ÍA’áSAR‚Å‚à‚SAR‚Å‚à‹¤‚ɉe‹¿‚ÍŒ©‚ç‚ê‚È‚¢B
@
‚T) K. Andrews and D. Savitz:@
Accuracy of industry and occupation on death certification of electric utility
workers: Implications for Epidemiologic studies of magnetic fields and cancer.@
Ž€–SØ–¾‘‚Ìî•ñ‚É‚æ‚é‰uŠw‚ÆAŽÀÛ‚Ì–\˜IðŒ‚Ȃǂ𸸂µ‚½B@
Ž€–SØ–¾‘‚É‹LÚ‚³‚ꂽŽ–€‚ðŠî‚É“dŽ¥ŠE–\˜I—Ê‚ð„’肵‚Äs‚¤‰uŠw’²¸‚Å‚ÍA\•ª‚ÈŒ¤‹†¬‰Ê‚ª“¾‚ç‚ê‚È‚¢B@
i‰ß‹Ž‚ÌŒ¤‹†‚ÉAŽ€–SØ–¾‘‚Ìî•ñ‚ÉŠî‚¢‚ÄJob|Exposure
Metrics‚ð쬂µ‚Äs‚Á‚½“d‹CŠÖ˜A‚ÌE‹Æ]Ž–ŽÒ‚̓Kƒ“‚̃ŠƒXƒN‚ª‚‚¢‚Æ‚¢‚¤Œ¤‹†‚à‚ ‚邪A‚»‚ê‚ç‚ÍM—Š«‚ÉŒ‡‚¯‚é‚Æ‚¢‚¤‚±‚Æ‚©Hj @
‚U) H. Miki et al: @
Effects of environmental level magnetic field exposure on transcription of CMV
immediate early promoter DNA in@a cell-free in vitro
transcription system. @
‚U‚O‚g‚šŽ¥ŠEA‚P‚OƒÊ‚s‚©‚ç‚P‚O‚OƒÊ‚s‚ð–\˜IA‚q‚m‚`‚̇¬‚ɉe‹¿‚ÍŒ©‚ç‚ê‚È‚¢B@
‚R‚`D‚a‚‰‚@‚d‚Œ‚…‚ƒ‚”‚’‚‚‚‚‡‚Ž‚…‚”‚‰‚ƒ‚“@‚u‚‚ŒD‚Q‚P@‚m‚D‚R ‚`‚‚’‚‰‚Œ ‚Q‚O‚O‚O ˜_•¶Ž‚ÌŠT—v
‚Pj@Z. J. Sienkiewicz et al: Low-level exposure to
pulsed 900 MHz microwave radiation does not cause deficits in the performance of
a special leaning task in mice.@
‚Q‚O‚O‚O”N‚PŒŽ†‚É‹LÚ‚³‚ꂽ‚k‚‚‰‚ÌŒ¤‹†‚Ƒ΂ð‚È‚·Œ¤‹†i‚r‚`‚q‚Í”ñ”MŒø‰Ê‚Æ‚¢‚í‚ê‚é”͈͂ł ‚邪A‚±‚ÌŒ¤‹†‚æ‚è‚Í‘å‚«‚¢‚r‚`‚q‚ð‘l‚É–\˜IA”]‚Ì‹L‰¯—͂ɉe‹¿‚ªo‚Ä‚¢‚éj‚Æ‚¢‚¦‚éB
‚X‚O‚O‚l‚g‚š‚̃fƒWƒ^ƒ‹Œg‘Ñ“d˜b‚Ì•ûŽ®‚Ì“dŽ¥ŠE‚ð‚Ë‚¸‚Ý‚É–\˜IA‚r‚`‚q‚Í‚OD‚O‚T‚v^‚‹‚‡‚ÆAŽÀÛ‚ÌŒg‘Ñ“d˜b‚Ì“d—Í‚É‹ß‚¢’á‚¢‚r‚`‚q‚Ì“dŽ¥ŠE‚ð–\˜I‚³‚¹‚½B‚±‚Ìꇂ͂˂¸‚Ý‚Ì”]‚Ì‹L‰¯—͂ɉe‹¿‚Ío‚È‚©‚Á‚½B@
‚QjJ. R. Jauchem et al:
Cardiovascular and thermal effects of microwave irradiation at 1 and/or 10 GHz
in anesthetized rats.
l‚Ì“dŽ¥ŠE–\˜I‚Í’Pˆê‚ÌŽü”g”‚¾‚¯‚Å‚Í‚È‚A“¯Žž‚É•¡”‚Ì“dŽ¥ŠE‚É–\˜I‚µ‚Ä‚¢‚éB‚»‚±‚Å“¯Žž‚É‚P‚f‚g‚š‚Æ‚P‚O‚f‚g‚š‚Ì“dŽ¥ŠE‚ð–\˜I‚µ‚½Žž‚ÉA‘l‚ɉ½‚©‹N‚±‚é‚©ƒeƒXƒg‚µ‚½B@Œ‹‰Ê‚Í’PˆêŽü”g”–\˜I‚É”ä‚ׂÄA•¡”‚Ì“dŽ¥ŠE–\˜I‚Å‚ÍA“ÁˆÙ‚ÈŒ»Û‚ÍŒ©‚‚©‚ç‚È‚©‚Á‚½B@@
‚RjM. A. Stuchly et al:
Inter-laboratory comparison of numerical Dosimetry for human exposure to 60 Hz
electric and magnetic fields.@
‚T‚O‚g‚š“dŽ¥ŠE‚Ì–\˜I‚ɑ΂µ‚Äl‚ª‚Ç‚Ì’ö“x‚̉e‹¿‚ðŽó‚¯‚é‚©ƒhƒVƒƒgƒŠ[‚ÌŒ¤‹†‚ª·‚ñ‚Å‚ ‚éB@‚±‚̂悤‚ÈŒ¤‹†‚ðs‚Á‚Ä‚¢‚錤‹†ŠŠÔ‚ÅA‰ðÍŒ‹‰Ê‚É·ˆÙ‚ª‚ ‚é‚©ŒŸ“¢‚µ‚½B‚µˆÙ‚È‚é“_‚ª‚ ‚邱‚Æ‚ª”»‚Á‚½B
‚SjA. Wieraszko: Dantrolene
modulates the influence of steady magnetic fields on hippocampal evoked
potentials in vitro.
’¼—¬Ž¥ŠE@‚Q|‚Rƒ~ƒŠƒeƒXƒ‰‚ª‰½‚©‚ɉe‹¿‚ð—^‚¦‚Ä‚¢‚é‚Æ‚¢‚¤Œ¤‹†A“ï‰ð‚Å—‰ð‚Å‚«‚¸B
‚TjS. Ichioka et al:
High-intensity static magnetic fields modulate skin microcirculation and
temperature in vivo.@
@‘l‚É‚WƒeƒXƒ‰‚Æ‚¢‚¤‹‚¢’¼—¬Ž¥ŠE‚ð–\˜IAŒŒ—¬‚ɉe‹¿‚ªo‚½‚ªA‰Â‹t“I‚ȕω»‚ÅAŽ¥ŠE–\˜I‚©‚ç—£‚ê‚é‚ÆŒ³‚É‚à‚Ç‚éB
‚UjL. A. Coulton et al: The
effects of static magnetic fields on the rate of calcium/calmodulin-dependent
phosphorylation of myosin light chain.
‚c‚b@‚O|‚Q‚O‚OƒÊ‚si‚QƒKƒEƒXj‚Ì’¼—¬Ž¥ŠE‚ð×–E‚É–\˜IB‰ß‹Ž‚És‚í‚ꂽŒ¤‹†‚Å‚ÍA‚±‚ÌŽ¥ŠE‚ŕω»‚ªŒ»‚ꂽB@‰ß‹Ž‚És‚Á‚½Œ¤‹†ŽÒ‚Æî•ñŒðŠ·‚ðs‚¢‚È‚ª‚çAÄŒ»ŽÀŒ±‚ðs‚Á‚½‚ªA•Ï‰»‚ÍŒŸo‚Å‚«‚¸AÄŒ»ŽÀŒ±‚ÉŽ¸”s‚µ‚½B
‚VjW. T. Kaune et al: Rate of
occurrence of transient magnetic field events in
ƒAƒƒŠƒJ‚ÌZ‘î‚ÅA‰ß“n“I‚ÈŽ¥ŠE‚ð‚Ç‚Ì’ö“xŽó‚¯‚Ä‚¢‚é‚©A‰Æ’ë‚É’u‚©‚ê‚é“d‹C‹@Ší‚©‚ç‚Ì•úŽË‚Å‚Í‚È‚A“Á‚ɤ—pŽü”g”“dŒ¹‚É’…–Ú‚µ‚ÄŽÀ‘ª‚³‚ꂽB@‚P‚Q‚O‚g‚š‚â‚P‚W‚O‚g‚š‚ÌŽ¥ŠE‚ª‘½‚¢B@‚±‚ê‚ÍÆ–¾‚Ì’²ŒõƒVƒXƒeƒ€‚Ì“®ì‚É‚æ‚é‚à‚Ì‚ÆŽv‚í‚ê‚éB
‚WjW. T. Kaune et al:
Childrenfs exposure to magnetic fields produced by US television sets used for
viewing programs and playing video games.
‚s‚u‚ðŽ‹’®‚µ‚Ä‚¢‚鎞‚ÆA‚s‚uƒQ[ƒ€‚ð‚µ‚Ä‚¢‚鎞‚ÉAŽq‹Ÿ‚ª‚Ç‚Ì’ö“x‚ÌŽ¥ŠE‚ð—‚Ñ‚Ä‚¢‚é‚©’²¸B@‚s‚u‚ðŒ©‚Ä‚¢‚鎞‚Ì‚d‚k‚eŽ¥ŠE‚ÍA‚OD‚O‚O‚Xƒ}ƒCƒNƒƒeƒXƒ‰i‚OD‚O‚Xƒ~ƒŠƒKƒEƒXjA‚s‚uƒQ[ƒ€‚ð‚µ‚Ä‚¢‚鎞‚Ì‚d‚k‚eŽ¥ŠE‚Í‚OD‚O‚Q‚Rƒ}ƒCƒNƒ‚si‚OC‚Q‚Rƒ~ƒŠƒKƒEƒXj‚Å‚ ‚Á‚½B
‚XjT. Ikehara et al: Effects
on RH+(k+) uptake of HeLa cells in a high K+ medium of exposure to a Switched
1.7 Tesla magnetic field.
‚PD‚VƒeƒXƒ‰i‚P‚V‚O‚O‚OƒKƒEƒXj‚Ì’¼—¬Ž¥ŠE‚ð‚n‚Ž@‚n‚†‚†‚µ‚½ƒeƒXƒgB@×–EƒŒƒxƒ‹‚ÌŒ¤‹†B@“ï‰ð‚Å—‰ð¢“ïB@i‘å‚«‚È—U“±“d—¬‚ª—¬‚ê‚é‚̂ʼn½‚©‰e‹¿‚ª‚ ‚Á‚Ä‚à—Ç‚¢ŽÀŒ±ðŒ‚Å‚ ‚éBj
‚P‚OjW. Sontag: Modulation of cytokine production by
interferential current in differential HL-60 cells.
‚S‚‹‚g‚š‚`‚l•Ï’²‚Ì“d—¬‚ð×–E‚É—¬‚·B@‚QD‚T‚`^‚‚Q‚Ì—U“±“d—¬‚ª—¬‚ꂽŽž‚ÉA‘å‚«‚È×–E‚̖Ɖu‹@”\‚ɕω»‚ª‚Å‚½B@”|—{ðŒ‚ʼne‹¿‚͈قȂéB@i—U“±“d—¬‚ª‚P‚O‚O‚‚`^‚‚Q‚ð’´‚¦‚é‚Æ“dŽ¥”g‚̉e‹¿‚ªo‚Ä‚‚錤‹†‚ª‘½‚¢‚Ì‚ÅA‚±‚ê‚à•Ï‰»‚ª‚ ‚Á‚Ä“–‘R‚ÌŒ¤‹†‚Æ‚¢‚¦‚éBj
@@@@@@@ì¬F@‚Q‚O‚O‚P|‚P|‚R‚P@
‚a‚d‚l‚r˜_•¶Ž‚ÌŠT—v‚Å‚·B
‚PjA. Libiff et al: New Model
for Avian Magnetic Compass
’¹—Þ‚ÌŽ¥‹CƒRƒ“ƒpƒX‚͂ǂ̂悤‚ÈŒ´—‚Å‚ ‚é‚©H@’nŽ¥‹C‚Æ“dŠE¬•ª‚𒹂̒†‚É‚ ‚éƒ}ƒOƒlƒ^ƒCƒgi¶•¨Ž¥Îj‚ÅŠ´‚¶AƒCƒIƒ“‚Ì‹¤–ÂŒ»Û‚©‚ç’nŽ¥‹C‚𔻒肵‚Ä‚¢‚é‚Ì‚Å‚Í‚È‚¢‚©A‚Æ‚¢‚¤‰¼Ý‚Ì’ñˆÄB
‚QjM. Bornhausen et al:
Prenatal Exposure to 900 MHz, Cell-Phone Electromagnetic Fields Had No Effects
on Operant-Behavior Performance of Adult Rat.
e‘l‚ÉŽq‘l‚ª¶‚Ü‚ê‚é‘O‚Ì”DP‚Ìó‘Ô‚Å‚X‚O‚O‚l‚g‚šŒg‘Ñ“d˜b‚Ì“d”g‚É‘Š“–‚·‚é“dŽ¥”g‚𔘘I‚³‚¹‚½B@”˜˜I‹“x‚Í‚OD‚P‚‚v^‚ƒ‚‚Q‚ÆŒg‘Ñ“d˜b‚Ì’†Œp“ƒ‚©‚çlŠÔ‚ªŽó‚¯‚é‹“x‚Æ‚µ‚½B@¶‚܂ꂽŽq‘l‚Ìs“®‚É‚ÍA“dŽ¥”g‚̉e‹¿‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B
‚RjJ. Gray et al: In Vivo Enhancement of Chemotherapy
With Static Electric or Magnetic Fields.
‘l‚É”Šà•¨Ž¿‚ð“Š—^B@‚»‚Ì•”•ª‚É‚P‚T‚j‚u‚Ì“dˆ³‚ðˆó‰Á‚µ‚½‹à‘®ƒvƒŒ[ƒg‚ð’u‚«A‚Pj5•bŠÔŠu‚Ńvƒ‰ƒX‚P‚T‚j‚u‚©‚çƒ}ƒCƒiƒX‚P‚T‚j‚uA‚»‚µ‚ăvƒ‰ƒX‚P‚T‚j‚u‚ƕω»‚³‚¹‚½A‚Qj˜A‘±‚Å‚S‚T‚O‚‹‚u/‚‚Ì“dŠE‚ðˆó‰ÁA‚Rj‚P‚P‚O‚‚si‚P‚P‚O‚OƒKƒEƒXj‚Ì’¼—¬Ž¥ŠE‚𔘘I‚³‚¹‚½B@Œ‹‰Ê‚ÍŠà‚ð—}§‚µ‚½B@“dŽ¥ŠE‚É‚ÍŠà—}§ì—p‚ª‚ ‚éB
‚SjY. Nakaoka et al: Effect of
a 60 Hz Magnetic Field on the Behavior of Performance.
60‚g‚š‚ÌŽ¥ŠE‚ðƒ]ƒEƒŠƒ€ƒV‚É”˜˜IB@ƒ]ƒEƒŠƒ€ƒV‚ÍŠO•”ŠÂ‹«‚̕ω»‚É”ñí‚É•qŠ´‚É”½‰ž‚·‚éB@Œ‹‰ÊA‚S‚O‚O‚OƒKƒEƒX‚ð’´‚¦‚é‚ƃ]ƒEƒŠƒ€ƒV‚Ìs“®‚ɕω»‚ªo‚½B@
‚TjA. Maes et al: Cyrogenetic Effects of 50Hz Magnetic Fields of Different
Magnetic Flux Densities.
‚T‚O‚g‚š‚ÌŽ¥ŠE‚É×–E‚𔘘IB‚U‚Rƒ}ƒCƒNƒƒeƒXƒ‰‚©‚ç‚Q‚T‚O‚Oƒ}ƒCƒNƒƒeƒXƒ‰‚É”˜˜I‚³‚¹‚½B@Œ‹‰Ê‚ÍA‚c‚m‚`‚ɕω»‚Í–³‚©‚Á‚½B
‚UjV. Veiga et al: Cellular
Damage and Altered Carbohydrate Expression in P815 Tumor Cells Induced by
Direct Electric Current: An In Vitro Analysis.
‚c‚b‚Qm‚`‚𗬂·‚±‚Æ‚ÅŠàŽ¡—Âɖ𗧂‰”\«‚ª‚ ‚éB@‚c‚b‚Ì“d‹É‚̃Jƒ\[ƒh‘¤‚ƃAƒm[ƒh‘¤‚Å‚ÍŒø‰Ê‚ªˆÙ‚È‚Á‚½B
‚VjP. Galloni et al: Effects
of 50 Hz Magnetic Fields Exposure on Tumor Experimental Models.
Ž¥ŠE50‚g‚š‚Q‚‚si‚Q‚OƒKƒEƒXj‚ð‘l‚É”˜˜IAŠà‚Ì‘”‚Í–³‚©‚Á‚½B@ƒ|ƒWƒeƒuƒRƒ“ƒgƒ[ƒ‹‚Æ‚µ‚Äs‚È‚Á‚½‚wüÆŽË‚Å‚ÍAŠà‚Í‘”‚µ‚½B
‹L2008-4-16@WEB‚Ö‚ÌŒöŠJF2014-11-25
ŠT—v‚ÌŠT—v‚¾‚¯‚Í‹L“ü‚µ‚½B
‰A«Œø‰ÊE—z«Œø‰ÊEŽÀ‘Ô’²¸‚È‚Ç‚ªs‚í‚ê‚Ä‚¢‚éB—z«Œø‰Ê‚¾‚¯‚ª”•\‚³‚ê‚Ä‚¢‚é‚Ì‚Å‚Í‚È‚¢B
—z«Œ¤‹†F“dŽ¥ŠE‚͈«‰e‹¿‚ð‹y‚Ú‚·@‚Æ‚¢‚¤Œ‹‰Ê‚ÌŒ¤‹†
‰A«Œ¤‹†F“dŽ¥ŠE‚͈«‰e‹¿‚ð‹y‚Ú‚³‚È‚¢@‚Æ‚¢‚¤Œ‹‰Ê‚ÌŒ¤‹†
’†«Œ¤‹†F“dŽ¥ŠE‚ÌŽÀ‘Ô‚âA”˜˜I•]‰¿‚ÌÚׂȂǂ̌¤‹†@@‚É•ª—Þ‚·‚éB
ŠÖS‚Ì‚ ‚é‚©‚½‚ÍAŒ´•¶‘S•¶‚ð“üŽè‚µ‚Ä“Ç‚ñ‚Å‚‚¾‚³‚¢B
1FŒg‘Ñ“d˜bGSMŽÀ‹@‚ðŽg—p‚µ‚½ŽÀŒ±A”]”gEEG‚̃Aƒ‹ƒtƒ@”g‚ɉe‹¿@@@—z«Œ¤‹†
ƒ^ƒCƒgƒ‹FThe
effect of mobile phone electromagnetic fields on the alpha rhythm of human
electroencephalogram
ƒqƒg‚Ì”]”gEEG‚̃¿”g‚Ö‚ÌŒg‘Ñ“d˜b“dŽ¥”g‚̉e‹¿
Œ¤‹†ŽÒFR.J.
Croft ‚ç
ŠT—vFMobile
phones (MP) emit low-level electromagnetic fields that have been reported to
affect neural function in humans; however, demonstrations of such effects have
not been conclusive.
The purpose of the present study was to test one of the strongest findings in the
literature; that of increased alpha power in response to MP-type radiation.
Healthy participants (N = 120) were tested using a double-blind counterbalanced
crossover design, with each receiving a 30-min Active and a 30-min Sham
Exposure 1 week apart, while electroencephalogram (EEG) data were recorded.
Resting alpha power (8-12 Hz) was then derived as a function of time, for
periods both during and following exposure.
Non-parametric analyses were employed as data could not be normalized.
Previous reports of an overall alpha power enhancement during the MP exposure
were confirmed (relative to Sham), with this effect larger at ipsilateral than
contralateral sites over posterior regions.
No overall change to alpha power was observed following exposure cessation;
however, there was less alpha power contralateral to the exposure source during
this period (relative to ipsilateral).
Employing a strong methodology, the current findings support previous research
that has reported an effect of MP exposure on EEG alpha power.
2FP11-19:Œg‘Ñ“d˜b‚ÉŠÖ‚µ‚ă{ƒ‰ƒ“ƒeƒBƒA‚É‚æ‚錤‹†AƒZƒbƒgƒAƒbƒv‚É‚æ‚Á‚Ä‹ÇŠ“I‚ÈSAR‚ªˆÙ‚È‚éB’†«Œ¤‹†
ƒ^ƒCƒgƒ‹FDosimetric evaluation and
comparison of different RF exposure apparatuses used in human volunteer studies
ƒqƒg‚̃{ƒ‰ƒ“ƒeƒBƒAŒ¤‹†‚É‚æ‚é‚Žü”g“dŽ¥”g”˜˜I‘•’u‚̈Ⴂ‚É‚æ‚锘˜I•]‰¿‚Æ‚»‚Ì”äŠr
Œ¤‹†ŽÒFClémentine M. Boutry ‚ç
ŠT—vFThe
aim of this study was to provide the information necessary to enable the
comparison of exposure conditions in different human volunteer studies
published by the research groups at the Universities of Turku, Swinburne, and
Zurich.
The latter applied a setup optimized for human volunteer studies in the context
of risk assessment while the first two applied a modified commercial mobile
phone for which detailed dosimetric data were
lacking.
While the Zurich Setup exposed the entire cortex of the target hemisphere, the
other two setups resulted in only very localized exposure of the upper cheek,
and concentrated on a limited area of the middle temporal gyrus just above the
ear.
The resulting peak spatial SAR averaged over 1 g of the cortex was 0.19 W/kg of
the Swinburne Setup, and 0.31 W/kg for the Turku Setup, compared to 1 W/kg for
the Zurich Setup.
The average exposure of the thalamus was 5% and 9% of the Zurich Setup results
for the Swinburne and Turku Setups, respectively. In general, the phone-based
setup results in only reasonably defined exposures in a very limited area
around the maximum exposure; the exposure of the rest of the cortex was low,
and may vary greatly as a function of the setup, position, and local anatomy.
The analysis confirms the need for a carefully designed exposure setup that
exposes the relevant brain areas to a well-defined level in human volunteer
studies, and shows that studies can only be properly compared and replicated if
sufficiently detailed dosimetric information is available.
3FP20-28Fƒmƒ‹ƒEƒF[‚É‚¨‚¯‚é50HzŽ¥ŠE‚ÌŽÀ‘Ô’²¸A“~‚Ì“¹˜Hã‚Å9mG@@’†«Œ¤‹†
ƒ^ƒCƒgƒ‹FELF-magnetic
flux densities measured in a city environment in summer and winter
‰Ä‚Æ“~‚É‚¨‚¯‚é“sŽs“à‚Ì’´’áŽü”gŽ¥ŠE‚Ì‘ª’è
Œ¤‹†ŽÒFAksel Straume ‚ç
ŠT—vFEpidemiological
studies have indicated a connection between extremely low frequency magnetic
flux densities above 0.4ƒÊT (time weighted average) and childhood
leukemia risks.
This conclusion is based mainly on indoor exposure measurements.
We therefore regarded it important to map outdoor magnetic flux densities in
public areas in Trondheim, Norway.
Because of seasonal power consumption variations, the fields were measured
during both summer and winter. Magnetic flux density was mapped 1.0 m above the
ground along 17 km of pavements in downtown Trondheim.
The spectrum was measured at some spots and the magnetic flux density emanated
mainly from the power frequency of 50 Hz.
In summer less than 4% of the streets showed values exceeding 0.4 ƒÊT,
increasing to 29% and 34% on cold and on snowy winter days, respectively. The
average levels were 0.13 ƒÊT (summer), 0.85ƒÊT
(winter, cold), and 0.90 ƒÊT (winter, snow), with the highest
recorded value of 37 ƒÊT.
High spot measurements were usually encountered above underground transformer
substations.
In winter electric heating of pavements also gave rise to relatively high flux
densities.
There was no indication that the ICNIRP basic restriction was exceeded. It
would be of interest to map the flux density situation in other cities and
towns with a cold climate.
4FP29|38F50Hz‚ÌŽ¥ŠEA350ƒÊT‚ÅAŠà‚Ì‘£iì—p‚Í‚È‚¢@@@@‰A«Œø‰Ê
ƒ^ƒCƒgƒ‹FLack
of promotion effects of 50 Hz magnetic fields on
7,12-dimethylbenz(a)anthracene-induced malignant lymphoma/lymphatic leukemia in
mice
ƒ}ƒEƒX‚É‚¨‚¯‚é7,12-dimethylbenz(a)anthracene‚Å—U“±‚µ‚½ˆ««ƒVƒ“ƒpŽîEƒŠƒ“ƒp«”’ŒŒ•a‚ɑ΂·‚é50‚g‚šŽ¥ŠE‚Ì‘£iŒø‰Ê‚ÍŒ©‚ç‚ê‚È‚¢B
Œ¤‹†ŽÒFTadashi
Negishi‚ç
ŠT—vFNew-born
CD-1 mice were initiated with a single subcutaneous injection of 60 ƒÊg
7,12-dimethylbenz(a)anthracene (DMBA) within 24 h after birth.
After weaning, the mice were randomly divided into five groups of 100, 50 males
and 50 females each. One group served as a cage control.
The other four groups of mice were exposed to either 0 (sham-exposed), 7, 70,
or 350 ƒÊT(rms) circularly polarized 50 Hz
magnetic fields (MFs) for 22 h/day, 7 days/week for 30 weeks.
Animals were observed daily and the development of malignant lymphoma/lymphatic
leukemia was examined histopathologically.
The experiment was conducted twice.
There was no observed sexual difference in the cumulative proportions of mice
with malignant lymphoma/lymphatic leukemia and a 3-way analysis of deviance
using the Cox regression model revealed no interactions between experiment,
sex, or group.
The cumulative proportions of mice with malignant lymphoma/lymphatic leukemia
in the MF-exposed groups were not significantly higher than those in the
sham-exposed group of each sex in individual experiments and in males and
females combined in each experiment, and in all the animals from the two
experiments combined.
These data provide no evidence to support the hypothesis that power frequency
MFs is a significant risk factor for hematopoietic neoplasia.
5FP39-46F’¼—¬100ƒKƒEƒXŽ¥ŠE‚ͬ’·‚ð‘£i@@Ž¥ŠE‚Ì—Ç«Œø‰Ê
ƒ^ƒCƒgƒ‹FEffects
of magnetic field on the antioxidant defense system of recirculation-cultured
Chlorella vulgaris
ÄzŠÂ”|—{‚µ‚½•’ʂ̃NƒƒŒƒ‰‚ÌRŽ_‰»–hŒìì—p‚É‚¨‚¯‚鎥ŠE‚ÌŒø‰Ê
Œ¤‹†ŽÒFHai-Ying
Wang‚ç
ŠT—vFLittle
is known about the influence of magnetic fields (MF) on growth of microalgae
such as Chlorella vulgaris, which has been consumed as health food for various
nutritional and pharmacological effects.
His preliminary study investigated whether static MF can modulate the
antioxidant system in C. vulgaris by exposing the cells to static MF generated
by dual yoke electromagnets with magnetic flux density of 10-50 mT for 12 h. After exposure to 10-35 mT
for 12 h, the activity of superoxide dismutases and
peroxidase increased significantly compared to control cells.
However, a remarkable increase of catalase activity occurred at 45 and 50mT.
The lipid peroxidation of algae cells determined by production of thiobarbituric acid-reactive substances was much increased
when exposed to 35, 45, and 50mT of MF.
The scavenging ability of 2.2-diphenyl-1-picrylhydrazyl radical was decreased
markedly while there was no variation of total carotenoids content in C.
vulgaris cells.
Assay of specific growth rate in 72 h cultivation after MF exposure was also
conducted. In groups after exposure to 10-35 mT of
MF, specific growth rate was significantly increased.
These results suggest that 10-35 mT of static MF
exposure could promote the growth of C. vulgaris and regulate its antioxidant
defense system to protect cells efficiently, which could possibly enhance the
growth of C. vulgaris in industrialized cultivation by MF.
6FP47-54FŽ•‚É‹à‘®‚ð—p‚¢‚½ê‡A’¼—¬“d—¬‚Í×–E‚ÌŽ€‚ð‘‰Á‚³‚¹‚éB@@@ˆã—ÃŒø‰ÊH—z«Œø‰ÊH
ƒ^ƒCƒgƒ‹FDirect
current electrical fields induce apoptosis in oral mucosa cancer cells by NADPH
oxidase-derived reactive oxygen species
’¼—¬“dŠE‚ÍANADPH
oxidase‚É‚æ‚Á‚Ä—U“±‚³‚ꂽ”½‰ž“I‚ÈŽ_‰»Ží‚É‚æ‚éŒûo”S–ŒŠà×–E‚É‚¨‚¯‚éƒAƒ|[ƒgƒVƒX‚ð‘‰Á‚³‚¹‚éB
Œ¤‹†ŽÒFMaria
Wartenberg ‚ç
ŠT—vFThe
presence of more than one dental alloy in the oral cavity often causes
pathological galvanic currents and voltage resulting in superficial erosions of
the oral mucosa and eventually in the emergence of oral cancer.
In the present study the mechanisms of apoptosis of oral mucosa cancer cells in
response to electromagnetic fields was investigated.
Direct current (DC) electrical fields with field strengths between 2 and 16
V/m, applied for 24 h to UM-SCC-14-C oral mucosa cancer cells, dose-dependently
resulted in decreased cell proliferation as evaluated by Ki-67
immunohistochemistry and up-regulation of the cyclin-dependent kinase (CDK)
inhibitors p21cip1/waf1 and p27kip1, which are associated with cell cycle
arrest. Electrical field treatment (4 V/m, 24 h) increased apoptosis as
evaluated by immune-histo-chemical analysis of
cleaved caspase-3 and poly-(ADP-ribose)-polymerase-1 (PARP-1).
Furthermore, robust reactive oxygen species (ROS) generation, increased
expression of NADPH oxidase subunits as well as Hsp70 was observed.
Electrical field treatment (4 V/m, 24 h) resulted in increased expression of
Cu/Zn superoxide dismutase and decreased intracellular concentration of reduced
glutathione (GSH), whereas the expression of catalase remained unchanged.
Pre-treatment with the free radical scavenger N-acetyl cysteine (NAC) and the
superoxide dismutase mimetic EUK-8 abolished caspase-3 and PARP-1 induction,
suggesting that apoptosis in oral mucosa cancer cells is initiated by ROS
generation in response to DC electrical field treatment.
7FP55-64F2.1GHz“dŽ¥ŠE”˜˜I0.8W/kg‚Å×–E‚Ì•ª‰»‚ɉe‹¿‚È‚µ@@‰A«Œø‰Ê
ƒ^ƒCƒgƒ‹FMobile
phone base station radiation does not affect neoplastic Transformation in
BALB/3T3 cells
Œg‘Ñ“d˜bŠî’n‹Ç‚©‚ç‚Ì“dŽ¥”g‚ÍBALB/3T3×–E‚É‚¨‚¯‚éŽîᇫ•ª‰»‚ɉe‹¿‚ð—^‚¦‚È‚¢B
Œ¤‹†ŽÒFH. Hirose‚ç
ŠT—vFA large-scale in vitro study focusing
on low-level radiofrequency (RF) fields from mobile radio base stations
employing the International Mobile Telecommunication 2000 (IMT-2000) cellular
system was conducted to test the hypothesis that modulated RF fields affect
malignant transformation or other cellular stress responses.
Our group previously reported that DNA strand breaks were not induced in human
cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA)
radiation up to 800mW/kg from mobile radio base stations employing the IMT-2000
cellular system.
In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz
W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was
assessed.
In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields
in a similar fashion, to assess for effects on tumor promotion. Finally, the
effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells
initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate
(TPA).
At the end of the incubation period, transformation dishes were fixed, stained
with Giemsa, and scored for morphologically transformed foci.
No significant differences in transformation frequency were observed between
the test groups exposed to RF signals and the sham-exposed negative controls in
the non-, MCA-, or MCA plus TPA-treated cells.
Our studies found no evidence to support the hypothesis that RF fields may
affect malignant transformation.
Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes
tumor formation.
8:P65-70Fƒ~ƒŠ”g‘шæ‚É‚¨‚¯‚éZ“§[‚³‚ÌŒ¤‹†@@@’†«Œ¤‹†
ƒ^ƒCƒgƒ‹FMillimeter
wave dosimetry of human skin ƒqƒg‚̔畆‚É‚¨‚¯‚éƒ~ƒŠ”g‚Ì”˜˜I•]‰¿
Œ¤‹†ŽÒFS.I.
Alekseev‚ç
ŠT—vFTo
identify the mechanisms of biological effects of mm waves it is important to
develop accurate methods for evaluating absorption and penetration depth of mm
waves in the epidermis and dermis.
The main characteristics of mm wave skin dosimetry were calculated using a
homogeneous unilayer model and two multilayer models
of skin.
These characteristics included reflection, power density (PD), penetration
depth (), and specific absorption rate (SAR).
The parameters of the models were found from fitting the models to the
experimental data obtained from measurements of mm wave reflection from human
skin.
The forearm and palm data were used to model the skin with thin and thick
stratum corneum (SC), respectively.
The thin SC produced little influence on the interaction of mm waves with skin.
On the contrary, the thick SC in the palm played the role of a matching layer
and significantly reduced reflection.
In addition, the palmar skin manifested a broad peak in reflection within the
83-277 GHz range.
The viable epidermis plus dermis, containing a large amount of free water,
greatly attenuated mm wave energy.
Therefore, the deeper fat layer had little effect on the PD and SAR profiles.
We observed the appearance of a moderate SAR peak in the therapeutic frequency
range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm.
Millimeter waves penetrate into the human skin deep enough ( = 0.65 mm at 42
GHz) to affect most skin structures located in the epidermis and dermis.
9:P71-80FŒg‘Ñ“d˜b@•â’®Ší‚ւ̉e‹¿@‰·“x‚Í0.3“xã¸
ƒ^ƒCƒgƒ‹FAssessment
of SAR and thermal changes near a cochlear implant system for mobile phone type
exposures
Œg‘Ñ“d˜b‚É‚æ‚é“dŽ¥”g”˜˜I‚ɑ΂·‚éå—‹‚̃Cƒ“ƒvƒ‰ƒ“ƒgƒVƒXƒeƒ€‹ß–T‚É‚¨‚¯‚é‚r‚`‚q‚Ɖ·“x•Ï‰»‚ÉŠÖ‚·‚é•]‰¿
Œ¤‹†ŽÒFRobert
L. McIntosh ‚ç
ŠT—vFA
cochlear implant system is a device used to enable hearing in people with
severe hearing loss and consists of an internal implant and external speech
processor.
This study considers the effect of scattered radiofrequency fields when these
persons are subject to mobile phone type exposure.
A worst-case scenario is considered where the antenna is operating at nominal
full power, the speech processor is situated behind the ear using a metallic
hook, and the antenna is adjacent to the hook and the internal ball electrode.
The resultant energy deposition and thermal changes were determined through
numerical modelling.
With a 900 MHz half-wave dipole antenna producing continuous-wave (CW) 250 mW power, the maximum 10 g averaged SAR was 1.31 W/kg which
occurred in the vicinity of the hook and the ball electrode.
The maximum temperature increase was 0.33Ž in skin adjacent to
the hook.
For the 1800 MHz antenna, operating at 125 mW, the
maximum 10 g averaged SAR was 0.93 W/kg in the pinna whilst the maximum
temperature change was 0.16Ž.
The analysis predicts that the wearer complies with the radiofrequency safety
limits specified by the International Commission on Non-Ionizing Radiation
Protection (ICNIRP), the Institute of Electrical and Electronics Engineers
(IEEE), and the Australian Radiation Protection and Nuclear Safety Agency
(ARPANSA) for 900 and 1800 MHz mobile phone type exposure and thus raises no
cause for concern.
The resultant temperature increase is well below the maximum rise of 1Ž
recommended by ICNIRP. Effects in the cochlea were insignificant.
‹LF‚Q‚O‚P‚P|‚S|‚Q‚U
ŠÈ’P‚ÈŠT—v‚ÆAbstract‚ÌŒ´•¶‚ðˆÈ‰º‚ÉŽ¦‚·B
ŽžŠÔ‚̧–ñ‚©‚çAbstract‚̉¼–ó‚Í‚Å‚«‚Ü‚¹‚ñ‚Å‚µ‚½B
ŠÖS‚Ì‚ ‚é‚©‚½‚ÍAˆÈ‰º‚̉p•¶‚ð“Ç‚Þ‚©AŒ´•¶‘S•¶‚ð“üŽè‚µ‚Ä“Ç‚ñ‚Å‚‚¾‚³‚¢B
ƒ^ƒCƒgƒ‹FRadiofrequency interaction with conductive
colloids: Permittivity and electrical conductivity of single-wall carbon
nanotubes in saline (pages 582–588)
Œ¤‹†ŽÒFH. Michael Gach, Tejas Nair
Abstract
Conductive nanoparticles may enhance tissue heating during radiofrequency (RF)
irradiation.
Specific absorption rate (SAR) is known to rise with the electrical
conductivity of tissue.
However, no studies to date have measured the relationship between complex
permittivity and nanoparticle concentration in tissue-like samples.
The complex permittivities of colloids containing
single-wall carbon nanotubes (SWCNTs) in normal (0.9%) saline were measured
from 20 MHz to 1 GHz.
Carbon concentrations ranged from 0 to 93 mM (0.06% volume), based on SWCNT
weight per volume.
Measurements were made with 0.02% Pluronic F108 surfactant added to the
colloids to prevent SWCNT flocculation.
The data were fit to the Cole–Cole relaxation model with an added constant
phase angle element to correct for electrode polarization effects at low RF
frequencies. Electrode polarization effects increased with carbon
concentration.
The real parts of the permittivities of the colloids
increased with carbon concentration.
The static conductivity rose linearly with carbon concentration, doubling from
0 to 93 mM.
The SAR of the colloids is expected to increase with RF frequency, based on the
properties of the imaginary part of the permittivity.
ˆã—×pƒnƒCƒp[ƒT[ƒ~ƒA‚ÉŠÖ‚·‚錤‹†
ƒ^ƒCƒgƒ‹FConfirmation studies of Soviet research on
immunological effects of microwaves: Russian immunology results (pages 589–602)
Œ¤‹†ŽÒFYury G. Grigoriev, Oleg A. Grigoriev, Alexander A.et al:
Abstract
This paper presents the results of a replication study performed to investigate
earlier Soviet studies conducted between 1974 and 1991 that showed
immunological and reproductive effects of long-term low-level exposure of rats
to radiofrequency (RF) electromagnetic fields.
The early studies were used, in part, for developing exposure standards for the
USSR population and thus it was necessary to confirm the Russian findings.
In the present study, the conditions of RF exposure were made as similar as
possible to those in the earlier experiments: Wistar rats were exposed in the
far field to 2450 MHz continuous wave RF fields with an incident power density
in the cages of 5 W/m2 for 7 h/day, 5 days/week for a total of 30 days,
resulting in a whole-body SAR of 0.16 W/kg.
Effects of the exposure on immunological parameters in the brain and liver of
rats were evaluated using the complement fixation test (CFT), as in the
original studies, and an additional test, the more modern ELISA test.
Our results, using CFT and ELISA, partly confirmed the findings of
the early studies and indicated possible effects from non-thermal RF exposure
on autoimmune processes.
The RF exposure resulted in minor increases in formation of antibodies in brain
tissue extract and the exposure did not appear to be pathological.
In addition, a study was conducted to replicate a previous Soviet study on
effects from the injection of blood serum from RF-exposed rats on pregnancy and
foetal and offspring development of rats, using a
similar animal model and protocol.
Our results showed the same general trends as the earlier study, suggesting
possible adverse effects of the blood serum from exposed rats on pregnancy and foetal development of intact rats, however, application of
these results in developing exposure standards is limited.
ƒ‰ƒbƒg‚É2450MHz‚Ì“dŽ¥ŠE‚ð‘Sg‚É”˜˜IASAR‚Í0.16W/kg‚ÅA‰ß‹Ž‚Æ“¯‚¶‰e‹¿‚ª‚ ‚é‚Æ‚¢‚¤ƒf[ƒ^‚ðÄŒ»‚µ‚½A‚Æ‚¢‚¤Œ¤‹†Œ‹‰ÊB
Œ´•¶‚ð“Ç‚Þ‚ÆAƒ‰ƒbƒg‚Í1“ú7ŽžŠÔ“dŽ¥ŠE‚É”˜˜I‚µ‚Ä‚¢‚ÄA“dŽ¥ŠE‚Ö‚Ì”˜˜I’†‚ÍAˆù‚Ý…‚Ɖa‚ͧŒÀ‚µ‚½‚Æ‚ ‚éB
‚»‚Ì‚½‚ß‚ÉA‘Ìd‚Í’Êí‚ÌŽ”ˆç” ‚ÅŽ”ˆç‚µ‚½ŒQ‚É”ä‚ׂÄA’á‚‚È‚Á‚Ä‚¢‚éB‚±‚¤‚µ‚½‰e‹¿‚à‚ ‚Á‚½‚Ì‚©‚à‚µ‚ê‚È‚¢B
”˜˜I‹“x‚Æ‚µ‚Ä‘Sg•½‹ÏSAR‚Í0.16W/kg‚Å‚ ‚邪A“ª•”‚Ì‹ÇŠSAR‚̃s[ƒN‚Í1W/kg‚Å‚ ‚éB
Œ¤‹†ŽÒ‚Í‚±‚ꂪNon-thermal Œø‰Ê‚Å‚ ‚é‚Æ‹Lq‚µ‚Ä‚¢‚邪AICNIRP‚̈ê”ÊŒöO‚Ö‚Ì”˜˜IŠî€‚Å‚Í‘Sg”˜˜I‚ÍÅ‘å0.08W/kg‚Å‚ ‚éB
ƒ^ƒCƒgƒ‹FExtremely low-frequency
electromagnetic fields affect the immune response of monocyte-derived
macrophages to pathogens (pages 603–612)
Œ¤‹†ŽÒFZafer Akan, Burak Aksu,
et al;
Abstract
This study aimed to determine the effect of extremely low-frequency
electromagnetic fields (ELF-EMF) on the physiological response of phagocytes to
an infectious agent.
THP-1 cells (human monocytic leukemia cell line) were cultured and 50 Hz, 1 mT EMF was applied for 4–6 h to cells induced with
Staphylococcus aureus or interferon gamma/lipopolysaccharide (IFƒÁ/LPS).
Alterations in nitric oxide (NO), inducible nitric oxide synthase (iNOS) levels, heat shock protein 70 levels (hsp70), cGMP
levels, caspase-9 activation, and the growth rate of S. aureus were determined.
The growth curve of exposed bacteria was lower than the control. Field
application increased NO levels.
The increase was more prominent for S. aureus-induced cells and appeared
earlier than the increase in cells without field application.
However, a slight decrease was observed in iNOS
levels.
Increased cGMP levels in response to field application were closely correlated
with increased NO levels. ELF-EMF alone caused increased hsp70 levels in a
time-dependent manner.
When cells were induced with S. aureus or IFƒÁ/LPS,
field application produced higher levels of hsp70. ELF-EMF suppressed caspase-9
activation by a small extent. These data confirm that ELF-EMF affects bacterial
growth and the response of the immune system to bacterial challenges,
suggesting that ELF-EMF could be exploited for beneficial uses.
50Hz 1mT‚ÌŽ¥ŠE”˜˜I‚ʼne‹¿‚ðŒ©‚Â‚¯‚½B
ƒ^ƒCƒgƒ‹FA numerical coefficient for evaluation of the
environmental impact of electromagnetic fields radiated by base stations for
mobile communications (pages 613–621)
Œ¤‹†ŽÒFP. Russo, G. Cerri and V.
Vespasiani
Abstract
The aim of this study is the development of an Electromagnetic Environmental
Impact Factor (EEIF).
This is a global parameter that represents the level of electromagnetic impact
on a specific area due to the presence of radiating systems, such as base
station (BS) antennas for mobile communications.
The numerical value of the EEIF depends only on the electromagnetic field
intensity, a well-defined physical quantity that can easily be measured or
computed.
The paper describes the significant parameters of the field distribution
adopted to evaluate the EEIF, and the assumptions used to develop a proper
scale of values.
Finally, some examples of application of the EEIF method are analyzed for real
situations in a typical urban area.
ƒCƒ^ƒŠƒA‚Ì–@—¥‚ÉŠî‚ÂŒg‘Ñ“d˜bŠî’n‹Ç‚©‚ç”M‚³‚ê‚é“d”g”˜˜I‚Ì”’lŒvŽZ‚É‚æ‚é•]‰¿–@‚ÉŠÖ‚·‚錤‹†
ƒ^ƒCƒgƒ‹FEffect of static magnetic fields on the budding of
yeast cells (pages 622–629)
Œ¤‹†ŽÒFShigeki Egami, Yujiro Naruse
and Hitoshi Watarai
Abstract
The effect of static magnetic fields on the budding of single yeast cells was
investigated using a magnetic circuit that was capable of generating a strong
magnetic field (2.93 T) and gradient (6100 T2/ m).
Saccharomyces cerevisiae yeast cells were grown in an aqueous YPD agar in a
silica capillary under either a homogeneous or inhomogeneous static magnetic
field.
Although the size of budding yeast cells was only slightly affected by the
magnetic fields after 4 h, the budding angle was clearly affected by the
direction of the homogeneous and inhomogeneous magnetic fields.
In the homogeneous magnetic field, the budding direction of daughter yeast
cells was mainly oriented in the direction of magnetic field B.
However, when subjected to the inhomogeneous magnetic field, the daughter yeast
cells tended to bud along the axis of capillary flow in regions where the
magnetic gradient, estimated by B(dB/dx), were high.
Based on the present experimental results, the possible mechanism for the
magnetic effect on the budding direction of daughter yeast cells is
theoretically discussed.
‚RT‚Æ‚¢‚¤‹‚¢ÃŽ¥ŠE‚ɃC[ƒXƒg‹Û‚𔘘I‚µ‚½Œ¤‹†B
ƒ^ƒCƒgƒ‹FEffects of a 300 mT
static magnetic field on human umbilical vein endothelial cells (pages 630–639)
Œ¤‹†ŽÒFLucia Potenza, Chiara Martinelli, Emanuela Polidori et al;
Abstract
This study describes the effects of a static magnetic field (SMF) on cell
growth and DNA integrity of human umbilical vein endothelial cells (HUVECs).
Fast halo assay was used to investigate nuclear damage; quantitative polymerase
chain reaction (QPCR), standard PCR, and real-time PCR were used to evaluate
mitochondrial DNA integrity, content, and gene expression.
HUVECs were continually exposed to a 300 mT SMF for
4, 24, 48, and 72 h.
Compared to control samples (unexposed cultures) the SMF-exposed cells did not
show a statistically significant change in their viability.
Conversely, the static field was shown to be significant after 4 h of exposure,
inducing damage on both the nuclear and mitochondrial levels, reducing
mitochondrial content and increasing reactive oxygen species.
Twenty-four hours of exposure increased mitochondrial DNA content as well as
expression of one of the main genes related to mitochondrial biogenesis.
No significant differences between exposed and sham cultures were found after
48 and 72 h of exposure.
The results suggest that a 300 mT SMF does not cause
permanent DNA damage in HUVECs and stimulates a transient mitochondrial
biogenesis.
300mT‚ÌÃŽ¥ŠE”˜˜I‚É‚æ‚Á‚Ä×–E‚ɉe‹¿‚ðŒ©‚½‚ªAˆêŽž“I‚ȕω»‚ÅA‰i‹v“I‚ȕω»‚Å‚Í‚È‚©‚Á‚½B
ƒ^ƒCƒgƒ‹FEffects of 180 mT static
magnetic fields on diabetic wound healing in rats (pages 640–648)
Œ¤‹†ŽÒFDa Jing, Guanghao Shen,
Jing Cai, Feijiang Li, Jinghui Huang et al;
Abstract
Diabetic wound (DW) problems are becoming a formidable clinical challenge due
to the sharp increase in the diabetic population and the high incidence of DW.
Static magnetic field (SMF) therapy, an inexpensive and accessible noninvasive
method, has been proven to be effective on various tissue repairs.
However, the issue of the therapeutic effect of SMF on DW healing has never
been investigated.
The objective of this study was to systematically evaluate the effect of a 180 mT moderate-intensity gradient SMF on DW healing in
streptozotocin-induced diabetic rats.
Forty-eight 3-month-old male Sprague–Dawley rats (32 diabetic and 16
non-diabetic rats) were assigned to three equal groups: normal wound, DW, and
DW + SMF groups.
An open circular wound with 1.5 cm diameter was created in the dorsum.
The wound was covered with a dressing and the magnet was fixed on top of the
dressing.
On days 5, 12, and 19, four rats of each group were euthanized and gross wound
area, histology and tensile strength were evaluated.
The wound area determination suggested that SMF significantly increased the
healing rate and reduced the gross healing time.
This result was further confirmed by histological observations.
The wound tensile strength, reflecting the amount and quality of collagen
deposition, increased to a larger extent in the DW + SMF group on days 12 and
19 compared with the DW group.
The results indicated that 180 mT SMF presented a
beneficial effect on DW healing, and implied the clinical potential of SMF
therapy in accelerating DW repair and releasing the psychological and physical
burdens of diabetic patients.
180‚TÃŽ¥ŠE‚͈ã—ÃiŽ¡—Ãj‚É—LŒø‚©‚à‚µ‚ê‚È‚¢@‚Æ‚¢‚¤Œ¤‹†B
ƒ^ƒCƒgƒ‹FReduction of the earth's magnetic field inhibits
growth rates of model cancer cell lines (pages 649–655)
Œ¤‹†ŽÒFCarlos F. Martino, Lucas Portelli,
Kevin McCabeet al;
Abstract
Small alterations in static magnetic fields have been shown to affect certain
chemical reaction rates ex vivo.
In this manuscript, we present data demonstrating that similar small changes in
static magnetic fields between individual cell culture incubators results in
significantly altered cell cycle rates for multiple cancer-derived cell lines.
This change as assessed by cell number is not a result of apoptosis, necrosis,
or cell cycle alterations.
While the underlying mechanism is unclear, the implications for all cell
culture experiments are clear; static magnetic field conditions within
incubators must be considered and/or controlled just as one does for
temperature, humidity, and carbon dioxide concentration.
×–EŽÀŒ±‚É‚¨‚¢‚ÄA’nŽ¥‹CiÃŽ¥ŠEj¬•ª‚Ì—L–³‚ÅA×–E‚̬’·‚ª‰e‹¿‚ðŽó‚¯‚éB
’Êí‚Ì’nŽ¥‹C‚Ì‹‚³‚ɑ΂µ‚ÄA’nŽ¥‹C‚ª‚È‚¢ó‘Ô‚É‚·‚é‚ÆA×–E‚̬’·‚ª—}§‚³‚ê‚éB
ŽÀŒ±‚É‚æ‚é臒l‚Í20ƒÊT‚Å‚ ‚èA‚±‚ê‚æ‚è’á‚¢‚Ƭ’·‚ª—}§‚³‚ê‚éB
‚µ‚½‚ª‚Á‚ÄB×–EŽÀŒ±‚ðs‚¤ê‡‚ÍA‰·“x‚⎼“x‚ÌŠÇ—‚ɉÁ‚¦‚ÄA’nŽ¥‹C‚ÉŠÖ‚·‚é”z—¶‚ª•K—v‚É‚È‚Á‚Ä‚‚éB
ˆÈ‰º‚Ƀf[ƒ^‚̈ꕔ‚ðˆø—p‚·‚éB
45ƒÊT‚Ì’Êí‚Ì’nŽ¥‹C‚É”ä‚ׂÄA’ႢꇂÌ×–E”‚ɈႢ‚ªo‚Ä‚¢‚éB
@@@
ƒ^ƒCƒgƒ‹FProtein changes in macrophages induced
by plasma from rats exposed to 35 GHz millimeter waves (pages 656–663)
Œ¤‹†ŽÒFRoza K. Sypniewska, Nancy J. Millenbaugh, Johnathan L. Kiel@et
al;
Abstract
A macrophage assay and proteomic screening were used to investigate the
biological activity of soluble factors in the plasma of millimeter wave-exposed
rats. NR8383 rat macrophages were incubated for 24 h with 10% plasma from male
Sprague–Dawley rats that had been exposed to sham conditions, or exposed to
42 ‹C environmental heat or 35 GHz millimeter waves at 75 mW/cm2
until core temperature reached 41.0 ‹C.
Two-dimensional polyacrylamide gel electrophoresis, image analysis, and Western
blotting were used to analyze approximately 600 protein spots in the cell
lysates for changes in protein abundance and levels of 3-nitrotyrosine, a
marker of macrophage stimulation.
Proteins of interest were identified using peptide mass fingerprinting.
Compared to plasma from sham-exposed rats, plasma from environmental heat- or
millimeter wave-exposed rats increased the expression of 11 proteins, and
levels of 3-nitrotyrosine in seven proteins, in the NR8383 cells.
These altered proteins are associated with inflammation, oxidative stress, and
energy metabolism.
Findings of this study indicate both environmental heat and 35 GHz millimeter
wave exposure elicit the release of macrophage-activating mediators into the
plasma of rats.
35GHz‚ðƒ‰ƒb‚Æ‚ÌŒŒŸ÷‚É”˜˜I‚µ‚½ŽÀŒ±A41“xC‚܂ʼn·“x㸂³‚¹‚Ä‚Ì”Mì—p‚ÉŠÖ‚·‚錤‹†B
‹LF‚Q‚O‚P‚W|‚T|‚T
‚Pj–kžŠ‚ç‚Ì“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚錤‹†
ŒfÚŽFBioelectromagnetics.
37:353–372, 2016.
ƒ^ƒCƒgƒ‹FDevelopment
and evaluation of an electromagnetic hypersensitivity questionnaire for
Japanese people
@“ú–{l‚ð‘ÎÛ‚Æ‚µ‚½“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚鎿–â•[‚ÌŠJ”‚Æ•]‰¿
Œ¤‹†ŽÒFSachiko
Hojo Mikiko Tokiya Masami Mizuki et al:
Abstract ŠT—v
The purpose of the present study was to evaluate the validity and reliability of
a Japanese version of an electromagnetic hypersensitivity (EHS) questionnaire,
originally developed by Eltiti et al. in the United
Kingdom.
–{Œ¤‹†‚Ì–Ú“I‚ÍA‰p‘‚ÌEltitit‚炪ŠJ”‚µ‚½“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚鎿–â•[‚Ì“ú–{Œê”Å‚ÌM—Š«‚Æ—LŒø«‚ð•]‰¿‚·‚邱‚Æ‚Å‚ ‚éB
Using this Japanese EHS questionnaire, surveys were conducted on 1306 controls
and 127 self]selected EHS
subjects in Japan.
‚±‚Ì“dŽ¥”g‰ß•qÇ‚ÌŽ¿–â•[‚ð—p‚¢‚ÄA“ú–{‚É‚¨‚¯‚鎩ŒÈ”F’è“dŽ¥”g‰ß•qÇŽÒ127lA‘ÎÆŒQ1306l‚ɑ΂µ‚ÄA’²¸‚ðs‚Á‚½B
Principal component analysis of controls revealed eight principal symptom
groups, namely, nervous, skin]related,
head]related, auditory and vestibular,
musculoskeletal, allergy]related,
sensory, and heart/chest]related.
Šî–{—vˆö‰ðÍ‚ÍA_ŒoŽ¿A”畆ŠÖ˜AA“ª•”ŠÖ˜AA’®Šo‚¨‚æ‚Ñ‘O’ëA‹ØœŠiŒnAƒAƒŒƒ‹ƒMŠÖ˜AAŠ´ŠoAS‘ŸE‹¹ŠÖ˜A‚Ì8‚‚̊î–{ÇóƒOƒ‹[ƒv‚𖾂炩‚É‚µ‚½B
The reliability of the Japanese EHS questionnaire was confirmed by high to
moderate intraclass correlation coefficients in a test–retest analysis, and
high Cronbach's ƒ¿ coefficients (0.853–0.953) from each subscale.
“ú–{Œê”Å“dŽ¥”g‰ß•qÇŽ¿–â•[‚ÌM—Š«‚ÍA‚»‚ꂼ‚ê‚̃TƒuŽw”‚É‚¨‚¢‚ÄAŽŽŒ±\ÄŽŽŒ±‰ðÍ‚É‚¨‚¯‚é‘ŠŠÖŒW”‚ÆACronbach@‚̃¿ŒW”‚ª‚“x‚©‚ç’†“x‚Å‚ ‚邱‚Æ‚©‚çAŠm”F‚µ‚½B
A comparison of scores of each subscale between self]selected EHS subjects and age] and sex]matched
controls using bivariate logistic regression analysis, Mann–Whitney
U] and ƒÔ2
tests, verified the validity of the questionnaire.
bivariate logistic regression‰ðÍAMann–Whitney U] and ƒÔ2ƒeƒXƒg‚ð—p‚¢‚½Ž©ŒÈ”F’è“dŽ¥”g‰ß•qÇŽÒ‚Æ”N—îE«•Ê‚ðƒ}ƒbƒ`‚³‚¹‚½‘ÎÆŒQ‚Ƃ̊Ԃ̃TƒuŽw”‚Ì”’l‚Ì”äŠr‚ÅA‚±‚ÌŽ¿–â•[‚Ì—LŒø«‚ðŠm”F‚Å‚«‚½B
This study demonstrated that the Japanese EHS questionnaire is reliable and
valid, and can be used for surveillance of EHS individuals in Japan.
‚±‚ÌŒ¤‹†‚ÅA“ú–{Œê”Å“dŽ¥”g‰ß•qÇŽ¿–â•[‚Í—LŒø‚Å‚ ‚èAM—Š‚Å‚«‚邱‚Æ‚ªŽ¦‚³‚ꂽB‚»‚µ‚ÄA“ú–{‚É‚¨‚¯‚é“dŽ¥”g‰ß•qÇŽÒŒÂX‚ÌŠm”F‚É—LŒø‚Å‚ ‚邱‚Æ‚ªŽ¦‚³‚ꂽB
Furthermore, based on multiple logistic regression and receiver operating
characteristic analyses, we propose specific preliminary criteria for screening
EHS individuals in Japan.
‚³‚ç‚ÉAmultiple
logistic regression‰ðÍ‚Æreceiver operating characteristic‰ðÍ‚ÉŠî‚«A“ú–{‚É‚¨‚¯‚éŒÂX‚Ì“dŽ¥”g‰ß•qÇŽÒ‚Ì”»’è‚ÉŽg‚¤1ŽŸ”»’è‚ÉŽg‚¤‚±‚Æ‚ðA‰äX‚Í’ñˆÄ‚·‚éB
‚QjŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚É‚æ‚鸎q‚ւ̉e‹¿‚ÉŠÖ‚·‚錤‹†
ŒfÚŽFBioelectromagnetics.
37:373–381, 2016.
ƒ^ƒCƒgƒ‹FEffects
of 1950 MHz W]CDMA]like
signal on human spermatozoa
1950‚l‚gz@W-CDMA—ÞŽ—‚ÌM†‚Ìl‚̸Žq‚ւ̉e‹¿
Œ¤‹†ŽÒFSetsu
Nakatani]Enomoto,
Miho Okutsu, Yoshikazu Ugawa
et al:
Abstract ŠT—v
There are growing concerns about how electromagnetic waves (EMW) emitted from
mobile phones affect human spermatozoa.
Œg‘Ñ“d˜b‚©‚ççtŽË‚³‚ê‚é“dŽ¥”g‚É‚æ‚él‚̸Žq‚ɉe‹¿‚ð—^‚¦‚邱‚Æ‚ÉŠÖ‚·‚é•sˆÀ‚ªL‚ª‚Á‚Ä‚¢‚éB
Several experiments have suggested harmful effects of EMW on human sperm
quality, motility, velocity, or the deoxyribonucleic acid (DNA) of spermatozoa.
l‚̸Žq‚ÌŽ¿E‰^“®—ÍE‘¬“x‚⸎q‚ÌDNA‚Ö‚Ì“dŽ¥”g‚ÌŒ’N‰e‹¿‚ªAŠô‘½‚ÌŒ¤‹†‚É‚æ‚Á‚ÄŽ¦´‚³‚ê‚Ä‚¢‚éB
In this study, we analyzed the effects on human spermatozoa (sperm motility and
kinetic variables) induced by 1 h of exposure to
1950 MHz Wideband Code Division Multiple
Access (W]CDMA)]like EMW with specific absorption rates
of either 2.0 or 6.0 W/kg, using a
computer]assisted sperm
analyzer system.
–{Œ¤‹†‚ʼnäX‚ÍAƒRƒ“ƒsƒ…[ƒ^Žx‰‡‚̸Žq‰ðÍ‘•’u‚ð—p‚¢‚ÄASAR‚ª2.0‚à‚µ‚‚Í6.0W/kg‚Ì“dŽ¥”gA‚±‚Ì“dŽ¥”g‚Í1950‚l‚gz‚ÌW-CDMA•ûŽ®‚ÅA1ŽžŠÔ‚Ì”˜˜I‚É‚æ‚Á‚ÄA¸Žqi‰^“®—͂Ɖ^“®•Ï”j‚ւ̉e‹¿‚𒲸‚µ‚½B
We also measured the percentage of 8]hydroxy]2Œ]deoxyguanosine
(8]OHdG)
positive spermatozoa with flow cytometry to evaluate damage to DNA.
DNA‚Ì‘¹‚𒲂ׂ邽‚ß‚É—¬“®×–EŒv‘ª–@‚ð—p‚¢‚ÄA‚W-OHdG—z«¸Žq‚ÌŠ„‡‚𑪒肵‚½B
No significant differences were observed between the EMW exposure and the sham
exposure in sperm motility, kinetic variables, or 8]OHdG
levels.
¸Žq‚̉^“®—ÍA‰^“®•Ï”A‚W-OHdG‚ÉŠÖ‚µ‚Ä‚ÍA“dŽ¥”g”˜˜IŒQ‚Æ‘ÎÆŒQ‚ÌŠÔ‚É“Œv“I‚È—LˆÓ·‚Í‚È‚©‚Á‚½B
We conclude that W]CDMA]like exposure for 1 h
under temperature]controlled
conditions has no detectable effect on normal human spermatozoa.
‰äX‚ÍA§Œä‚³‚ꂽó‘Ô‚Å‚Ì1ŽžŠÔ‚ÌW-CDMA—ÞŽ—‚Ì“dŽ¥”g”˜˜I‚ÍAˆê”Ê‚Ìl‚̸Žq‚ÌŒŸo‰Â”\‚ȉe‹¿‚Í‚Ý‚ç‚ê‚È‚©‚Á‚½‚ÆŒ‹˜_•t‚¯‚½B
Differences in exposure conditions, humidity, temperature control, baseline
sperm characteristics, and age of donors may explain inconsistency of our
results with several previous studies.
Ž¼“xA‰·“x§ŒäAŠî–{‚ƂȂ鸎q‚Ì«Ž¿A’ñ‹ŸŽÒ‚Ì”N—î‚È‚Ç‚Ì”˜˜IðŒ‚Ì·ˆÙ‚ªAŠô‘½‚Ì‚±‚ê‚Ü‚Å‚ÌŒ¤‹†‚ƉäX‚ÌŒ¤‹†‚ªˆê’v‚µ‚È‚¢——R‚Å‚ ‚é‚©‚à‚µ‚ê‚È‚¢B
‚RjŒg‘Ñ“d˜b‚Ì“dŽ¥”g”˜˜I‚ÅAŠî’n‹Ç‚©‚ç‚Ì“dŽ¥”g”˜˜I‚æ‚èA’[––‚©‚ç‚Ì”˜˜I‚ª‘å‚«‚¢‚Æ‚¢‚¤Œ¤‹†B
ŒfÚŽFBioelectromagnetics.
37:382–390, 2016.
ƒ^ƒCƒgƒ‹FComparison
of average global exposure of population induced by a macro 3G network in
different geographical areas in France and Serbia
ƒtƒ‰ƒ“ƒX‚ƃZƒ‹ƒrƒA‚Æ‚¢‚¤ˆÙ‚È‚é’n—Šwã‚Ì’nˆæ‚É‚¨‚¯‚éŒg‘Ñ“d˜b‚̃}ƒNƒ‚RG’ÊM–Ô‚É‚æ‚Á‚Ä”¶‚·‚镽‹Ï“I‚ÈlX‚Ì”˜˜I‚Ì”äŠr
Œ¤‹†ŽÒFYuanyuan
Huang, Nadège
Varsier, Stevan Niksic et al:
Abstract ŠT—v
This article is the first thorough study of average population exposure to
third generation network (3G)]induced
electromagnetic fields (EMFs), from both uplink and downlink radio emissions in
different countries, geographical areas, and for different wireless device
usages.
–{e‚ÍA‘æ3¢‘ã‚ÌŒg‘Ñ“d˜b’ÊM–Ô‚Å”¶‚·‚é“dŽ¥”g‚ÌZ–¯‚Ì•½‹Ï”˜˜I‚ðAƒAƒbƒvƒŠƒ“ƒNiŒg‘Ñ“d˜b’[––‚©‚çŠî’n‹Ç‚ÉŒü‚¯‚Ä‚Ì–³ü’ÊMj‚ƃ_ƒEƒ“ƒŠƒ“ƒNiŒg‘Ñ“d˜bŠî’n‹Ç‚©‚ç”M‚³‚ê‚é–³ü’ÊMj‚Ì—¼•û‚ÉŠÖ‚µ‚ÄA’n—Šw“I‚ɈقȂ鑂ÅA—p‚¢‚Ä‚¢‚é–³ü‘•’u‚ªˆÙ‚Ȃ邱‚Æ‚ð”O“ª‚ÉAʼn‚Ì“O’ê“I‚És‚Á‚½Œ¤‹†‚Å‚ ‚éB
Indeed, previous publications in the framework of exposure to EMFs generally
focused on individual exposure coming from either personal devices or base
stations.
ŽÀÛ‚ÉA“dŽ¥”g‚Ì”˜˜I‚ÉŠÖ‚·‚邱‚ê‚Ü‚Å‚ÌŠ§s•¨‚Å‚ÍAŒÂl‚ÅŽg—p‚·‚é‘•’u‚©‚ç‚©A‚à‚µ‚‚ÍŠî’n‹Ç‚©‚ç‚Ì”˜˜I‚Ì‚¢‚¸‚ê‚©‚ÉÅ“_‚ð“–‚Ä‚Ä‚¢‚½B
Results, derived from device usage statistics collected in France and Serbia,
show a strong heterogeneity of exposure, both in time, that is, the traffic
distribution over 24 h was found highly
variable, and space, that is, the exposure to 3G networks in France was found
to be roughly two times higher than in Serbia.
ƒtƒ‰ƒ“ƒX‚ƃZƒ‹ƒrƒA‚ÅŽûW‚³‚ꂽ“Œv‚ð—p‚¢‚½‰ðÍ‚©‚瓾‚ç‚ꂽŒ‹˜_‚ÍA”˜˜I‚Ì‹‚¢•s‹ÏŽ¿‚ªŒ©‚ç‚êAŽžŠÔ‚Å‚àŒ©‚ç‚êA‚·‚È‚í‚¿A24ŽžŠÔ‚̃gƒ‰ƒtƒBƒbƒNi’ÊM—Êj‚Ì•ª•z‚Í‚“x‚ɕω»‚µAꊂłà•Ï‰»‚µ‚Ä‚¢‚éBƒtƒ‰ƒ“ƒX‚É‚¨‚¯‚é‚RG’ÊM–Ô‚É‚æ‚锘˜I—Ê‚ÍAƒZƒ‹ƒrƒA‚É‚¨‚¯‚é—Ê‚Ì–ñ2”{‚Å‚ ‚邱‚Æ‚ª”»‚Á‚½B
Such heterogeneity is further explained based on real data and network
architecture.
‚»‚¤‚µ‚½•s‹ÏŽ¿‚³‚ÍŽÀۂ̃f[ƒ^‚Æ’ÊM–Ô‚Ì\¬‚É‚æ‚é‚à‚Ì‚ÆAà–¾‚³‚ê‚éB
Among those results, authors show that, contrary to popular belief, exposure to
3G EMFs is dominated by uplink radio emissions, resulting from voice and data
traffic, and average population EMF exposure differs from one geographical area
to another, as well as from one country to another, due to the different
cellular network architectures and variability of mobile usage.
Œ‹˜_‚̂ЂƂ‚Ƃµ‚ÄA‰äX‚ÍAˆê”Ê‚Ìl‚ÌŽv‚¢‚É”½‚µ‚ÄA‚RG‚É‚æ‚é“dŽ¥”g”˜˜I‚Å‚ÍA‰¹º‚ƃf[ƒ^’ÊMŽž‚É”¶‚·‚éƒAƒbƒvƒŠƒ“ƒN–³ü’ÊM‚É‚æ‚锘˜I‚ªŽå—v‚È”˜˜I‚Å‚ ‚èA‚»‚µ‚ÄA•½‹Ï“I‚ÈlX‚Ì“dŽ¥”g”˜˜I—Ê‚Í’n—Šw“I‚ȗ̈æ‚É‚æ‚Á‚ĈقȂéi‘‚É‚æ‚Á‚Ă͈قȂèAŒg‘Ñ“d˜b’ÊM–Ô‚Ì\’z‚âŒg‘Ñ“d˜b‚ÌŽg—p‚Ì•p“x‚̈Ⴂ‚È‚Ç‚É‚æ‚éj‚±‚Æ‚ðŽ¦‚·B
BEMSJ’FŒg‘Ñ“d˜b‚©‚ç‚Ì“dŽ¥”g”˜˜I‚ÅAƒ_ƒEƒ“ƒŠƒ“ƒNiŒg‘Ñ“d˜bŠî’n‹Ç‚©‚ç”M‚³‚ê‚é–³ü’ÊMj‚æ‚èAƒAƒbƒvƒŠƒ“ƒNiŒg‘Ñ“d˜b’[––‚©‚çŠî’n‹Ç‚ÉŒü‚¯‚Ä‚Ì–³ü’ÊMj‚É‚æ‚锘˜I‚ª‘å‚«‚¢‚Æ‚¢‚¤Œ‹‰Ê‚ÍA’–Ú‚·‚ׂ«‚Å‚ ‚éB
‚Sj–³üŽü”g”“dŽ¥ŠE‚̓}ƒEƒX‚Ì‹L‰¯áŠQ‚ðˆ«‰»‚³‚¹‚È‚¢@‚Æ‚¢‚¤Œ¤‹†
ŒfÚŽGBioelectromagnetics.
37:391–399, 2016.
ƒ^ƒCƒgƒ‹F1950 MHz
radiofrequency electromagnetic fields do not aggravate memory deficits in 5xFAD
mice
1950MHz–³üŽü”g”“dŽ¥”g‚Í5xFADƒ}ƒEƒX‚Ì‹L‰áŠQ‚ðˆ«‰»‚³‚¹‚È‚¢B
Œ¤‹†ŽÒFYeonghoon Son, Ye Ji Jeong, Jong Hwa Kwon et al:
Abstract ŠT—v
The increased use of mobile phones has generated public concern about the
impact of radiofrequency electromagnetic fields (RF]EMF) on health.
Œg‘Ñ“d˜b‚ÌŽg—p‚Ì‘‰Á‚ÍAˆê”ÊŒöO‚ÉA–³üŽü”g”“dŽ¥”g‚ÌŒ’N‚ւ̉e‹¿‚ÉŠÖ‚·‚é•sˆÀ‚ð‚à‚½‚炵‚Ä‚¢‚éB
In the present study, we investigated whether RF]EMFs
induce molecular changes in amyloid precursor protein (APP) processing and
amyloid beta (AƒÀ)]related memory
impairment in the 5xFAD mouse, which is a widely used amyloid animal model.
–{Œ¤‹†‚Å‚ÍA“dŽ¥”g‚É‚æ‚Á‚ÄA5xFAD
ƒ}ƒEƒX‚É‚¨‚¯‚éAPPiƒAƒ~ƒƒCƒhæ‹ì‘Ì‚½‚ñ‚Ï‚Ž¿j‚̉ÁH‚ƃAƒ~ƒƒCƒhƒx[ƒ^ŠÖ˜A‹L‰¯áŠQ‚É•ªŽq‚̕ω»‚ª—U”‚³‚ê‚é‚©A‚·‚È‚í‚¿L‚Žg—p‚³‚ê‚Ä‚¢‚éƒAƒ~ƒƒCƒh“®•¨ƒ‚ƒfƒ‹‚ð—p‚¢‚ÄA’²¸‚ðs‚Á‚½B
The 5xFAD mice at the age of 1.5 months were assigned to two groups (RF]EMF]
and sham]exposed groups,
eight mice per group).
1E5‚©ŒŽ—î‚Ì5xFADƒ}ƒEƒX‚ð–³üŽü”g“dŽ¥”g”˜˜IŒQ‚ÆA‹^Ž—”˜˜IŒQ‚ÉAŠe8•CAŠ„‚è“–‚Ä‚½B
The RF]EMF group was placed
in a reverberation chamber and exposed to 1950 MHz
electromagnetic fields for 3 months (SAR 5 W/kg,
2 h/day, 5 days/week).
“dŽ¥”g”˜˜IŒQ‚ÍA“d”gˆÃŽº‚Ì’†‚É’u‚©‚êA1950MHz‚Ì“dŽ¥”g‚ð3‚©ŒŽŠÔ”˜˜I‚µ‚½iSAR‚Í5W/‡sA1“ú2ŽžŠÔAT5“újB
The Y]maze, Morris water
maze, and novel object recognition memory test were used to evaluate spatial
and non]spatial memory
following 3]month RF]EMF exposure.
YŒ^–À˜HAƒ‚ƒŠƒX…”Õ–À˜HA‚»‚µ‚Ä’˜–¼‚È”FŽ¯‹L‰¯ŒŸ¸‚ð“dŽ¥”g”˜˜I3ƒJŒŽŒã‚ÉA‹óŠÔ”FŽ¯‹y‚Ñ”ñ‹óŠÔ”FŽ¯‹L‰¯‚Ì•]‰¿‚Ì‚½‚ß‚ÉAs‚Á‚½B
Furthermore, AƒÀ deposition and APP and carboxyl]terminal
fragment ƒÀ (CTFƒÀ)
levels were evaluated in the hippocampus and cortex of 5xFAD mice, and plasma
levels of AƒÀ peptides were also investigated.
‚³‚ç‚ÉA5xFADƒ}ƒEƒX‚ÌŠC”n‚Æ‘å”]”玿‚É‚¨‚¢‚ÄAAƒÀ‘ÍÏAAPP‚ÆCTFƒÀƒŒƒxƒ‹‚ð•]‰¿‚µA‚»‚µ‚ÄAAƒÀƒyƒvƒ`ƒh‚ÌŒŒŸ÷ƒŒƒxƒ‹‚à•]‰¿‚µ‚½B
In behavioral tests, mice that were exposed to RF]EMF
for 3 months did not exhibit differences in spatial and non]spatial memory compared to the sham]exposed group, and no apparent change
was evident in locomotor activity.
s“®—͂̃eƒXƒg‚Å‚ÍA3ƒJŒŽ“dŽ¥”g‚É–\˜I‚µ‚½ƒ}ƒEƒX‚ÍA‹^Ž—”˜˜IŒQ‚Æ”äŠr‚µ‚ÄA‹óŠÔ‹y‚Ñ”ñ‹óŠÔ‹L‰¯‚É·ˆÙ‚Ͷ‚¶‚È‚©‚Á‚½B‚»‚µ‚ÄAŠOŠÏã‚̕ω»‚Í‚È‚¢‚Ì‚ª•àsŠˆ«‚ÌŠmØ‚Å‚ ‚Á‚½B
Consistent with behavioral data, RF]EMF
did not alter APP and CTFƒÀ levels or AƒÀ deposition in the brains of the 5xFAD
mice.
s“®—͂̃f[ƒ^‚ƈê’v‚µ‚ÄA“dŽ¥”g”˜˜I‚Í5xFADƒ}ƒEƒX‚É‚¨‚¯‚éAAPP‚ÆCTFƒÀƒŒƒxƒ‹‚à‚µ‚‚̓}ƒEƒX‚Ì”]‚É‚¨‚¯‚éAƒÀ‘ÍÏ‚ð•Ï‰»‚³‚¹‚È‚©‚Á‚½B
These findings indicate that 3]month
RF]EMF exposure did not affect AƒÀ]related memory impairment or AƒÀ
accumulation in the 5xFAD Alzheimer's disease model.
‚±‚ê‚ç‚ÌŒ‹‰Ê‚ÍA3ƒJŒŽ‚Ì–³üŽü”g“dŽ¥”g”˜˜I‚ªA‹L‰¯áŠQ‚ÉŠÖ˜A‚·‚éAƒÀ‚ɉe‹¿‚ð—^‚¦‚¸A‚Ü‚½A5xFAD‚̃Aƒ‹ƒcƒnƒCƒ}[•aƒ‚ƒfƒ‹‚É‚¨‚¯‚éAƒÀWςɉe‹¿‚ð—^‚¦‚È‚¢‚±‚Æ‚ðŽ¦‚µ‚Ä‚¢‚éB
‚Tj100‚Ti1000ƒKƒEƒXj‚ÌÃŽ¥ŠE‚ªA•¨‚Ì”ˆç‚É—LŒø@‚Æ‚¢‚¤Œ¤‹†
ŒfÚŽFBioelectromagnetics.
37:400–408, 2016
ƒ^ƒCƒgƒ‹FPre]sowing static magnetic field treatment
for improving water and radiation use efficiency in chickpeaƒqƒˆƒRƒ}ƒ
(Cicer arietinum L.) under soil moisture stress
“yë‚Ì…•ªó‹µ‚É‚¨‚¯‚é‚Ђ悱“¤‚ÌA…‚ÆÆŽË‚ÌŒø—¦‰ü‘P‚Ì‚½‚ß‚ÉAŽí‚Ü‚«‘O‚ÌÃŽ¥ŠE‚Ö‚Ì”˜˜I
Œ¤‹†ŽÒFNilimesh Mridha,
Sudipta Chattaraj, et al:
Abstract
Soil moisture stress during pod filling is a major constraint in production of
chickpea (Cicer arietinum L.), a fundamentally dry
land crop. We investigated effect of pre]sowing
seed priming with static magnetic field (SMF) on alleviation of stress through
improvement in radiation and water use efficiencies.
Experiments were conducted under
greenhouse and open field conditions with desi and kabuli
genotypes.
Seeds exposed to SMF (strength: 100mT, exposure: 1 h)
led to increase in root volume and surface area by 70% and 65%, respectively.
This enabled the crop to utilize 60% higher moisture during the active growth
period (78–118 days after sowing), when soil moisture became limiting.
Both genotypes from treated seeds had better water utilization, biomass, and
radiation use efficiencies (17%, 40%, and 26% over control).
Seed pre]treatment with SMF
could, therefore, be a viable option for chickpea to alleviate soil moisture
stress in arid and semi]arid
regions, helping in augmenting its production.
it could be a viable option to improve growth and yield of chickpea under
deficit soil moisture condition, as the selection and breeding program takes a
decade before a tolerant variety is released.
‚UjÃŽ¥ŠE‚ÉŠÖ‚·‚錤‹†
ŒfÚŽFBio
electromagnetics. 37:409–422, 2016.
ƒ^ƒCƒgƒ‹FDielectric
polarization transients in biological tissue moving in a static magnetic field
ÃŽ¥ê’†‚ðˆÚ“®‚·‚鶑̑gD‚É‚¨‚¯‚é—U“d•ª‹É‚̉ߓnŒ»Û
Œ¤‹†ŽÒFKari
Jokela, Ilkka Laakso
Abstract
Movement of a body in a static magnetic
field gives rise to the Lorentz force that induces in the medium both electric
currents and dielectric polarization.
It is usually assumed that the
conductivity of biological tissues is sufficiently high in order to neglect
dielectric phenomenon arising from non]equilibrium
of polarization charges. However, the permittivity of biological tissues is
extremely high and the relaxation time of free charges is relatively low. In
this study, we examined the effect of dielectric polarization on the electric
field (EF) induced by human movements in a strong magnetic field (MF). Analytic
equations for brain and bone equivalent spheres translating and rotating in a
uniform MF were derived from Maxwell equations.
Several examples were computed by using Fast Fourier Transform to examine
transient dielectric effects in a time domain.
The results showed that dielectric polarization transients do arise, but in the
case of homogeneous medium, they are vanishingly small.
In contrast, the local dielectric transients are not vanishingly small in
heterogeneous medium.
However, due to limited acceleration and deceleration of normal human
movements, the transients are relatively small, at maximum a few dozen percent
of the EF induced by the change of the magnetic flux.
Taking into account the high uncertainty in numerical simulation, the
dielectric transients can be neglected in the case of biological materials but
not in the case of many non]biological
materials of low conductivity.
BEMSJ’F“ï‰ðB
‚Vj400kV‚ˆ³‘—“dü‰º‚Å‚Ìì‹Æ‚̈À‘S«
ŒfÚŽFBio
electromagnetics. 37:423–428, 2016.
ƒ^ƒCƒgƒ‹FCurrent
densities and total contact currents during forest clearing tasks under 400 kV
power lines
400 kV‚Ì“d—Íü‚̉º‚ÅX—Ñ”°Ìì‹Æ’†‚Ìl‚Ì“d—¬–§“x‚Æ‘ÚG“d—¬
Œ¤‹†ŽÒFLeena
Korpinen, Harri Kuisti, Jarmo Elovaara
Abstract ŠT—v
The aim of the study was to analyze all values of electric currents from
measured periods while performing tasks in forest clearing.
‚±‚ÌŒ¤‹†‚Ì–Ú“I‚ÍAX—Ñ”°Ì‚Ìì‹Æ‚ðŽÀs‚µ‚È‚ª‚瑪’è‚ðs‚Á‚½ŠúŠÔ‚Å“¾‚ç‚ꂽ‚·‚ׂĂ̓d—¬’l‚ð‰ðÍ‚·‚邱‚Æ‚Å‚ ‚éB
The objective was also to choose and analyze measurement cases, where current
measurements successfully lasted the entire work period (about 30 min).
–Ú•W‚ÍAì‹ÆŠúŠÔ‘S‘Ìi–ñ30•ªj‚ÉŽñ”ö‚æ‚Œp‘±‚µ‚½‘ª’è‚Å‚«‚½“d—¬‘ª’è’l‚ðA‘I‘ð‚Æ•ªÍ‚ðs‚¤‚±‚Æ‚Å‚µ‚½B
Two forestry workers volunteered to perform four forest clearing tasks under
400 kV power lines.
2l‚Ì—Ñ‹Æ]Ž–ŽÒ‚ªA400kV‚Ì“d—Íü‚̉º‚Å4‰ñ‚ÌX—Ñ”°Ìì‹Æ‚ðs‚¤‚±‚Æ‚ðŽuŠè‚µ‚½B
The sampling frequency of the current measurements was 1 sample/s.
“d—¬‘ª’è‚̃Tƒ“ƒvƒŠƒ“ƒOŽüŠú‚ÍA1•bŠÔ‚É1‰ñ‚Æ‚µ‚½B
The maximum values of the current densities were 1.0–1.2 mA/m2
(calculated internal EFs 5.0–12.0 mV/m),
and the average values were 0.2–0.4 mA/m2.
“d—¬–§“x‚ÌÅ‘å’l‚Í1.0–1.2 mA/m2
(ŒvŽZ‚É‚æ‚é‘Ì“à“dŠE‹“x‚Í5.0–12.0 mV/m)A•½‹Ï’l‚Í0.2–0.4 mA/m2‚Å‚ ‚Á‚½B
The highest contact current was 167.4 ƒÊA.
Å‚à‚‚¢ÚG“d—¬‚Í167.4ƒÊA‚Å‚ ‚Á‚½B
All measured values during forest clearing tasks were lower than basic
restrictions (0.1 V/m and 0.8 V/m)
of the International Commission on Non]Ionizing
Radiation Protection.
X—Ñ´‘|ì‹Æ’†‚Ì‘S‚Ä‚Ì‘ª’茋‰Ê‚Í‘Û”ñ“d—£•úŽËü–hŒìˆÏˆõ‰ï‚ÌŠî‘bŽwji0.1V/mA0.8V/‚j‚æ‚è’á‚©‚Á‚½B
‚UŒŽ‚ɃAƒƒŠƒJ‚ÅŠJ³‚ê‚é”NŽŸ‘‰ï‚̃vƒƒOƒ‰ƒ€‚ª“Í‚¢‚½B
u‰‰‚³‚ê‚鉉‘è‚ð’‚ß‚Ä‚Ý‚½B
‚PjVDT‚âƒpƒ\ƒRƒ“‚©‚ç‚Ì“dŽ¥”g‚ÉŠÖ‚·‚é˜_•¶‚Í,ˆÈ‰º‚Ì‚P“_‚ɉ߂¬‚È‚¢B
’A‚µAƒtƒ‰ƒ“ƒX‚̃eƒNƒmAOŠÖ˜A‚ÅTVŽóM‹@‚ð—p‚¢‚½“®•¨ŽÀŒ±‚Ì•ñ‚ª‚Q€‚ɃŠƒXƒg‚·‚镨‚ª‚ ‚éB
˜_•¶FW. T. Kaune et al: Childrenfs exposure to magnetic fields
produced by television sets used for viewing programs and playing video games.
‚QjƒeƒNƒmAO—‚Ý‚ÆŽv‚í‚ê‚éTVŽóM‹@‚ð—p‚¢‚½“®•¨ŽÀŒ±‚Ì•ñ‚ª‚ ‚éB
ƒ|ƒXƒ^[“WŽ¦F L. Bonhomme-faivre et al: Hematological effects of low doses of
television emitted radiation in miceF:A parallel study with protective equipment.
˜_•¶”•\F L. Bonhomme-faivre et al: Control variations observed in mice placed in
front of a color TV screen:@a feedback control?
‚Rj“ú–{‚©‚ç‚ÌŒ¤‹†•ñ‚ª‚ ‚éB
Š•æ¶‚àŽQ‰Á‚µ‚½Œ¤‹†‚à‚ ‚éB
ƒ|ƒXƒ^[“WŽ¦FY. kurokawa. M. Kabuto et al: Acute effects of 50 Hz magnetic
field on heart rate and cognition/performance tests in Humans.
‚Sj“Á‹L‚·‚ׂ«‚ÍA‘—“dü‚©‚ç‚ÌŽ¥ŠE‚ƬŽ™‚ª‚ñ‚ÌŠÖ˜A‚ðŽ¦´‚·‚é‰uŠw‚Å—p‚¢‚ç‚ꂽƒƒCƒ„[ƒR[ƒh‚ÆŒð’Ê—Ê‚ÌŠÖŒW‚ðŽ¦‚·Œ¤‹†‚ª•ñ‚³‚ê‚é—\’èB
˜_•¶FH. Wachtel et al:
Traffic density and wire codes may be risk cofactors for childhood cancer.
ƒ|ƒXƒ^[“WŽ¦FR. Pearson et al:
Wire codes and traffic density are associated on a citywide basis.
‚Tj“Á‹L‚·‚ׂ«‚ÍA“ú–{‚Ì‹vŒõ涂͔”N‘O‚ÌŒ¤‹†‚ÅŽ¥‹C‚ÅŠà×–E‚ðŽE‚·Œø‰Ê‚𔌩‚µ‚Ä‚¢‚邪A‚»‚ÌÄŒ»ŽÀŒ±‚È‚Ì‚©AƒhƒCƒc^ƒAƒƒŠƒJ‚©‚ç—ÞŽ—‚ÌŒ¤‹†”•\‚ª‚ ‚éB
G. Nindl et al: Electromagnetic 60 Hz fields increase
apoptosis of lymphocytes-A new area for possible therapeutic employment of
EMFs.
˜_•¶Eƒ|ƒXƒ^[“WŽ¦‚Å‚ÍA’áŽü”g‚Ì“dŽ¥ŠEAŒg‘Ñ“d˜b“™‚Ì‚Žü”g“dŽ¥”g“™A‘½Šò‚ɂ킽‚錤‹†¬‰Ê‚ª”•\‚³‚ê‚é—\’èB
—\eW‚Ì’†‚©‚ç“dŽ¥”g‰ß•qÇ‚ÆVDT‚ÉŠÖ‚·‚锕\‚ðŽæ‚èo‚µ‚Ü‚µ‚½B@‚»‚ÌŠT—v‚ðЉ‚Ü‚·B@
Œ´“TF@Abstract
collection@Bioelectromagnetics Society@Annual Meeting, June 9-16, 2000.@Munchen, Germany@
15-2j300ƒKƒEƒXA3000ƒKƒEƒX‚Æ‚¢‚¤‹‚¢èÎŽ¥ê‚̓qƒg‚ÌŒŒ—¬‚ɉe‹¿‚ð—^‚¦‚éB
CHANGES IN OXYGEN SATURATION LEVEL IN BLOOD DUE TO EXPOSURE TO STATIC MAGNETIC
FIELDS
T.D. Kutrumbos*
and F.S. Barnes
CONCLUSION: An array of strong magnets may change the SpO2 levels in blood in
either the positive or negative direction.@
15-3jƒƒVƒA‚Ì“S“¹ˆõ‚ÉS‘ŸŽ¾Š³‚ª‘½‚¢‚±‚Æ‚©‚ç“d‹C‹@ŠÖŽÔ‚Ì’¼—¬EŒð—¬Ž¥‹C‚̉e‹¿‚ðl‚¦‚½B
’¼—¬‚ƌ𗬂ðdô‚µ‚½Ž¥ŠE‚ðŒ’N‚ȃqƒg‚Ɉó‰Á‚µ‚ÄS””‚Ȃǂ̕ω»‚𒲸B
Œ‹‰Ê‚ÍŽ¥ŠE–\˜I‚É‚æ‚Á‚Ä‚È‚¢‚ª—LˆÓ‚ȕω»‚ªŒ»‚ꂽB@
IS THERE PHYSIOLOGICAL RESPONSE TO COMBINED DC/AC MF EXPOSURE WITH@PARAMETERS "SIMULATING" ELECTRIC ENGINE CONDITIONS?
E. Lyskov, M. Chernyshov,
CONCLUSIONS: Data do not conflict with main project hypothesis. However, more
pronounced CNS and ANS "stress" responses would be@expected, in context of possible links between MF exposure and
chronic cardiovascular disorders.
This work was supported by European
Commission (contract@NERBIC15-CT96-0303).
15-4j“dŽ¥”g‰ß•qÇ‚Æ‚¢‚í‚ê‚él‚̇–°‚ւ̉e‹¿‚𒲸B
20ƒKƒEƒX‚©‚ç60ƒKƒEƒX‚Ì50HzŒð—¬Ž¥ŠE‚ð2d–ÓŒŸ–@‚ňó‰Á‚µ‚½‚çA—‚’©‚Ì‹C•ª‚Ȃǂɉe‹¿‚ªŒ»‚ꂽB@
iƒRƒƒ“ƒgG20ƒKƒEƒX‚̌𗬎¥ŠE‚Å‚Í‘Ì“à‚É—U“±“d—¬‚ª—¬‚ê‚é‚Ì‚ÅAŒ’íl‚É‚à‰e‹¿‚ªo‚éHj@
PROJECT NEMESIS: DOUBLE-BLIND STUDY ON EFFECTS OF 50HZ EMF ON SLEEP QUALITY AND
PHYSIOLOGICAL PARAMETERS IN PEOPLE SUFFERING@FROM
ELECTRICAL HYPERSENSITIVITY.
Ch.H. Mueller, H. Krueger and Ch. Schierz
@
RESULTS: @
There was a significant overall effect of the EMF-provocation on subjective
parameters in the morning: p=0.042. The EMF-provocation@ affected the emotional scores pleasure and arousal in the morning (pPleasure=0.011; pArousal=0.046),
the sleep quality score was not@affected. 90 Further
inspection of the results revealed a trend@towards a
positive correlation between the EMF-provocation and@well-being
in the morning.
15-5jƒXƒgƒbƒNƒzƒ‹ƒ€‚ŃAƒ“ƒP[ƒg’²¸‚ðŽÀŽ{‚µ‚½‚ç“dŽ¥”g‚ɉߕq‚Å‚ ‚é‚Ɖñ“š‚µ‚½Š„‡‚Í‚PD‚T“‚Éã‚Á‚½B
iƒRƒƒ“ƒgFƒAƒ“ƒP[ƒg‚ł͉½‚ð‰ß•qÇ‚Æ‚¢‚Á‚Ä‚¢‚é‚Ì‚©ŒÂX‚̉ñ“šŽÒ‚É‚æ‚Á‚ĈقȂé‚Ì‚ÅA‚à‚¤‚µŒµ–§‚È’²¸AÄŒ»ŽÀŒ±‚È‚Ç‚ª•K—vj@
PREVALENCE OF REPORTED HYPERSENSITIVITY TO ELECTRICITY IN A POPULATION-BASED
SURVEY.
L. Hillert, N. Berglind,
B.B. Arnetz
RESULTS: Of all respondents, 1.5 % reported hypersensitivity to electric or
magnetic fields. The prevalence was higher in women than in men and the
syndrome was most common in the age group 60-69 years (2.1 %). @
15-6 jŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ɉߕq‚Å‚ ‚é‚Æ‘i‚¦‚él‚ð‘ÎÛ‚ÉÄŒ»ŽÀŒ±‚ðs‚Á‚½B
Œ‹‰ÊA‰ß•q‚Æ‚¢‚¤ƒqƒg‚ÍŒg‘Ñ“d˜b‚©‚ç‚Ì“d”g‚ªo‚Ä‚¢‚邱‚Æ‚ð³Šm‚É“–‚Ă邱‚Æ‚Ío—ˆ‚È‚©‚Á‚½B
PROVOCATIVE TESTING OF HYPERSENSITIVITY TO CELLULAR PHONES
M. Hietanen and A.-M. HamalainenFFinnish Institute of Occupational
RESULTS: All of the test persons had more or less severe subjective symptoms
during the provocative tests. However, none of them could correctly differ a
real exposure from a sham exposure. Hence, the results of these experiments did
not demonstrate clear connection between perceived health problems and@the RF field exposure.@
P-205j ƒeƒNƒmAO‚ÌŒø‰Ê‚ÌŒŸØŽÀŒ±A106“úŒã‚Ì•›t”玿ƒzƒ‹ƒ‚ƒ“‚ÍTV‚Ì‘O‚ÅŽ”ˆç‚µ‚½ê‡‚͕ω»‚¹‚¸A•ÊŽº‚ÅŽ”ˆç‚µ‚½‘ÎÆŒQ‚ƃeƒNƒmAO‚ð‚‚¯‚½TV‚ÅŽ”ˆç‚µ‚½‘l‚̕ω»‚Í“¯‚¶ŒXŒü‚Å‚ ‚Á‚½B‚±‚Ì‚±‚Æ‚©‚çƒeƒNƒmAO‚̓eƒŒƒr‚©‚ç‚̉e‹¿‚ð–hŒì‚µ‚Ä‚¢‚é‚ÆB@
iƒRƒƒ“ƒgFCortisol‚Ícortisone‚Ì‚±‚ÆH@•›t”玿ƒzƒ‹ƒ‚ƒ“B•›t”玿ƒzƒ‹ƒ‚ƒ“‚Í‘l‚̬ˆç‚łǂ̂悤‚ɕω»‚·‚é‚Ì‚ª³‚µ‚¢H‚»‚ê‚É‚æ‚Á‚Ä‚±‚ÌŒ¤‹†‚ª³‚µ‚‘l‚ðŽ”ˆç‚µ‚Ä‚¢‚½‚©AŒ¤‹†¬‰Ê‚ªM—Š‚Å‚«‚é‚©‚ª‚í‚©‚éBj@
CORTISOL ALTERATIONS OBSERVED IN MICE PLACED IN FRONT OF A COLOR T.V SCREEN : A
PARALLEL STUDY WITH A PROTECTIVE EQUIPMENT.
L. Bonhomme-Faivre R. Santini , S. Orbach-Arbouys@
CONCLUSION: Several studies have shown a decrease in cortisol values after
exposure to ELF. It could be objected that light from the TV screen could have
had an influence on cortisol secretion. @
It seems however more likely that the effects on cortisol are due to EMF since
it has already been reported (1,2) and since cortisol@is
not diminished in antenna protected mice placed under day light.@
CORTISOL VALUE ng/ml: DAY 21 DAY 106@
CONTROL
5.9 } 3.5 35.5 }
14.8 @
EXPOSED
10.7 } 5.4 15.4 } 10.5 @1,@2@
EXPOSED-PROTECTED 8.9 } 4.9 31.6 } 19.9@
Student's t test: p<0.05 :
1 - compared to control, 2 - compared to exposed protected.
‘S231ƒy[ƒW@PDFƒtƒ@ƒCƒ‹‚Å–ñ2.7MB‚Æ–c‘åA@‚»‚Ì’†‚©‚çŠÖŒW‚µ‚»‚¤‚Ș_•¶‚¾‚¯‚𔲂«o‚µ‚½B
”Z’ƒF‚Ì•”•ª‚ÍBEMSJ‚ªd—v‚ÆŽv‚¤ŒÂŠA@Še˜_‚ÌÅŒã‚ÉAŠT—v‚Æ•MŽÒ‚̃Rƒƒ“ƒg‚ð’Ç‹L‚µ‚½B
‚PDVDU, TV, Miscarriage‚Æ‚¢‚¤—pŒê‚Í—\eW‚É‚Í“oꂹ‚¸B@
‚QDVDT‚Æ‚¢‚¤Œ¾—t‚ª“oꂵ‚½—Bˆê‚ÌŒ¤‹†@
P63FSYMPTOMS EXPERIENCED BY USERS OF DIGITAL
CELLULAR PHONES.
R. Santini, M. Seigne*,
L. Bonhomme-Faivre*, S. Bouffet*, E. Defreasne*, M. Sage*.@
RESULTS: No significant
difference is observed between non-users and users of cellular phones for
general symptoms.
This result has to be put in perspective with the facts that:@
- a/ non-users are in reality
exposed to electromagnetic sources they know (70 % of them are exposed to VDT)
or they don't know (microwaves from base stations, ELF from electrical wiring
.... ) @
- b/in our study, the use of cellular phones by users is not important: for
example, the mean for the number of calls per day is < 5 and the mean of
calling time per day is < 15 minutes.
Cellular phone users significantly (P < 0.05) more often complain of
discomfort, warmth and pricking on the ear during communication, in relation
with calling duration ( > 2 minutes) and number of calls ( > 2 calls) per
day. @
The type of antenna has no significant effect on frequencies of complaints
reported by cellular phones users. Users of 1800 MHz significantly (P<0.05)
complain more often of concentration difficulties than 900 MHz users.@
The use of both cellular phone
and VDT significantly (P < 0.05) increases concentrating difficulties. In
users of cellular phones, women significantly (P < 0.05) complain more often
of sleep disturbances than men. This sex difference for sleep disturbances is
not observed between women and men non-users of cellular phones.@
CONCLUSION: Some of
our results are new, compared to Mild report (2), as for example, sex
difference for complaints about sleep disturbances, 1800 versus 900 MHz users
difference for concentrating difficulties, ....@
We think that the warmth sensation on the ear reported here by digital cellular
phones users during communication, is the result, at the skin level of
microwave cerebral hyperthermia, because microwaves increase temperature of a material from inside
to outside (3) and because warmth receptors are in the skin.@
Thus the warmth sensation on the ear might be a signal for users indicating
that it is time to stop the call.
ŠT—vF@ƒAƒ“ƒP[ƒg‚ÅŒg‘Ñ“d˜b—˜—pŽÒ‚Æ”ñ—˜—pŽÒ‚ÌÇó‚ð•·‚¢‚½B
Œ‹‰ÊAŒg‘Ñ“d˜b‚Æ‚u‚c‚s‚ðŽg—p‚µ‚Ä‚¢‚él‚ÉW’†—ÍŽU–Ÿ‚Æ‚¢‚¤ƒP[ƒX‚ª‘½‚¢B
@—«‚ÌŒg‘Ñ“d˜bŽg—pŽÒ‚É–é–°‚ê‚È‚¢‚Æ‚¢‚¤D‘i‚ª‘½‚¢B@
Ž¨‚ÌŠ‚ªŒg‘Ñ“d˜b‚ÌŽg—p‚ÅŒg‘Ñ“d˜b‚Ì“d”g‚Å”M‚Š´‚¶‚é‚Ì‚ÍA“d˜b‚ð‚·‚é‚±‚Æ‚ðŽ~‚ß‚ë‚Æ‚¢‚¤‡}‚©‚à’m‚ê‚È‚¢B@
iƒRƒƒ“ƒgGŒg‘Ñ“d˜b‚Ì“d—Í’ö“x‚ÅŽ¨‚Ì•”•ª‚̉·“x‚ªã¸‚·‚éHj@
‚RD“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚錤‹†@
6-5:24H HOLTER ECG RECORDING AND PARALLEL
MONITORING OF ELF MAGNETIC FIELD EXPOSURE IN PERSONS WITH PERCEIVED ELECTRICAL
HYPERSENSISTIVITY. @
M.Sandstrom 1 , K.H. Mild
1,2 , R Hörnsten 1,3 *, E. Lyskov 1 .@
METHOD: We have used 24h
Holter recording (Tracker 2, Reynolds Medical Ltd UK, two channels 24 hour
ambulatory tape recorder) to monitor the basic autonomous nervous system
processes - ECG, HR and heart rate variability(HRV) - which are the most
sensitive integral parameters of central and autonomous regulation. @
The EMF monitoring was done by
using EMDEX II instruments. The participant wore the ECG and EMF recorders for
24 hours during a typical working day and
maintained a concurrent diary of the activities during that time.
The ECG recording have been analyzed for possible transient abnormalities of
neuro-cardio-vascular regulation (arrhythmia's, extrasystols
etc.) and quantitative assessment of ongoing balance of sympatho-parasympathetic
regulation.@
A standard program was used to detect and calculate pathological events as well
as the dynamic of HR and HRV.@
Two groups of subjects (14 persons in each) was included in the investigation.
Patients with perceived EHS symptoms was selected from the Departments of
Occupational Medicine and Dermatology at the
RESULTS and DISCUSSION: The magnetic field recording showed the normal
variation during the 24 h with low values during night time and occasionally
high values were encountered in daytime.
No differences were found
between the two groups, neither for the mean values of the broadband recording
(0.09 and 0.11 µT for the patients and the controls, respectively) nor the
harmonic content (corresponding values here were 0.03 µT for both groups).
We found no difference between the groups in the
mean HR for the 24 h, nor was there any difference during night time. @
However, the HRV analyses
showed that the ratio LF/HF ( LF= 0.05 – 0.15 Hz, HF= 0.15 – 0.30 Hz) was
higher for the patient group over the 24 h period than for the control group.
The difference between the groups was in the ratio
LF/HF was even larger during night time. The higher ratio indicates a higher symphaticus activity. This findings is in accordance with
the results from previous clinical investigations of patients with perceived
EHS.
ŠT—vF@“dŽ¥”g‰ß•qÇ‚Æ‚¢‚í‚ê‚él‚ÆŒ’íŽÒ‚ªS“d}‚Æ“dŽ¥ŠE”˜˜IŒv‚ð24ŽžŠÔŒg‚¦‚Ä‘ª’肵‚½B
—¼ƒOƒ‹[ƒv‚ÌŠÔ‚É–\˜I‚µ‚½“dŽ¥ŠE‚É·ˆÙ‚Í‚È‚¢B‰ß•qÇ‚ÌŒQ‚ÉS“d}‚̃f[ƒ^‚ªŒ’íŒQ‚ƈقȂéB
iƒRƒƒ“ƒgFS“d}‚̃f[ƒ^‚É·ˆÙ‚ª‚ ‚é‚©‚ç‚Æ‚¢‚Á‚ÄA‰ß•q‚Èl‚Í“dŽ¥”g‚̉e‹¿‚ðŽó‚¯ˆÕ‚¢‚Æ‚¢‚¦‚é‚Ì‚©HHj
‚SD‰uŠwŒ¤‹†‚©‚ç@
3-1:A NATIONWIDE GERMAN POPULATION-BASED
CASE-CONTROL STUDY ON CHILDHOOD LEUKEMIA AND RESIDENTIAL MAGNETIC FIELDS.@
J. Schuz 1 *,J.P. Grigat 2 *,B. Stormer 2 *,K. Brinkmann 2 ,J. Michaelis 1 *.
OBJECTIVES: We investigated whether exposure to residential
power-frequency (50 Hz) magnetic fields above 0.2µT increases a childfs risk of
leukemia. One major task of this study was to confirm or to reject a finding of a previous German study on this topic which
reported an increased leukaemia risk with exposure to
stronger magnetic fields during the night [1].
RESULTS: Magnetic fields above 0.2µT were a relatively rare event in
Germany (only 1.5% of the study population) [2]. @
Less than one third of all median magnetic fields above 0.2µT were produced by
high-voltage power lines.
Childhood leukaemia and 24 hours median magnetic
fields were only weakly related (odds ratio 1.55, 95% confidence interval
0.65-3.67).
Based on 12 exposed cases and 12 exposed controls, a statistically significant
association was seen between childhood leukaemia and
magnetic field exposure during the night (3.21, 1.33-7.80).
A dose-response-relationship for night-time
exposure was observed after combining the data of all German studies on magnetic
fields and childhood leukaemia (p for trend <0.01)
[3].
CONCLUSIONS: The evidence for an association between childhood leukaemia and magnetic fields in our study comes from a
measure of the childfs exposure during the night. Albeit the large size of this
study, the results are based on small numbers of exposed children. If the
observed association stands, the effect on a population level in
ŠT—vF@24ŽžŠÔŽq‹Ÿ‚ÌQŽº‹y‚Ñ’·‚¢ŠÔ‚·‚²‚·•”‰®‚ÌŽ¥ŠE‚𑪒èB@
24ŽžŠÔ‚ÌŽ¥ŠE•½‹Ï’l‚ƬŽ™”’ŒŒ•a‚̃IƒbƒY”ä‚Í1.55(CI 0.65-3.67),–éŠÔ‚ÌŽ¥ŠE’l‚ƬŽ™”’ŒŒ•a‚̃IƒbƒY”ä‚Í3.21iCI 1.33-7.80j‚Æ‘‰ÁB@
iƒRƒƒ“ƒgFǗႪ12‚Æ‚Í‚È‚·‚¬‚È‚¢H@j@@
3-2FMORTALITY FROM NEUROLOGICAL DISEASE IN A
COHORT OF ENGINEERING@INDUSTRY WORKERS EXPOSED TO ELF
MAGNETIC FIELDS.
N. HakanssonF P. GustavssonF C.
JohansenF B. Floderus
METHODS: The study was based on a cohort with an increased
prevalence of resistance
welders (highly exposed to ELF MF). In order to
establish the cohort, we identified branches of industries where resistance
welding could take place. @
The second step was to identify work places within these branches of industries
during the study period (1985-96). Finally, we identified 537 692 men and 180
529 women employed at the selected work places.
The cohort was matched against the Causes of Death registry and the three most
recent censuses. Levels of ELF MF exposure were obtained from a job exposure
matrix.
Based on occupation according to the censuses, four levels of exposure were
used (low, medium, high and very high exposure). We analyzed both underlying
and contributing causes of death. Relative risk estimates (RR) were based on
Cox regression.@
RESULTS: No association was found for all neurological diseases
combined.
There was an elevated risk among both men and
women for Alzheimerfs disease and the risk tended to increase with increasing
exposure level for both sexes. @
Furthermore, we found an elevated risk for amyotrophic lateral sclerosis (ALS)
and also for this disease there was a suggestion of an exposure-response
relationship.
We found no association for Parkinsonfs disease, multiple sclerosis or
epilepsy. e did not find any association.
DISCUSSION: The findings in this study are in line with previous reports of an increased
mortality and risk for Alzheimerfs disease and ALS among employees
occupationally exposed to ELF MF.@
An advantage of this study is the
possibility to evaluate exposure-response relationships due to the increased
prevalence of high exposed subjects.
An important limitation is that the analyses were based on mortality
data. The relationships between exposure to ELF MF and neurodegenerative
diseases should be further verified, preferably based on morbidity data.@
ŠT—vF@ƒhƒCƒc‚Å—nÚH‚Ì—l‚ÉŽ¥ŠE–\˜I‚Ì‘½‚¢E‹Æ‚Å‚ÍA‘¼‚ÌŒ¤‹†‚Æ“¯‚¶‚AƒAƒ‹ƒcƒnƒCƒ}[•a“™‚̃ŠƒXƒN‚ª‘‰Á‚µ‚Ä‚¢‚éB@
iƒRƒƒ“ƒgGƒAƒuƒXƒgƒ‰ƒNƒg‚É‚Í‘‰Á‚µ‚½ƒŠƒXƒN‚Ì‘å‚«‚³‚âM—Š«‹æŠÔ‚ª‚È‚A‚Ç‚Ì’ö“x‚Ì‘å‚«‚³‚̃ŠƒXƒN‚È‚Ì‚©”»’f‚Å‚«‚È‚¢Bj@
3-3FCANCER AND HIGH VOLTAGE POWERLINES WITH
RESPECT TO WIND DIRECTION.
A. Preece, M.G. Wright*, G.R. Iwi*, E. Dunn*, D.J.
Etherington*
BACKGROUND: The past 20 years has seen considerable research into the
health effects of exposure to power frequency magnetic fields, where a number
of studies, notably those near high voltage power lines@have suggested an association with childhood leukaemia
1 .
These studies have looked at cases of cancer within 50m of power lines (the
range of the magnetic field)2 and have considered only distance and not
prevailing wind direction; at these distances any wind direction effects are
likely to be obscured.
Recent studies have suggested that aerosols produced by very high voltage lines might combine with
pollutants and indirectly might be a mechanism for increased cancer rates 3.@
RESULTS: The ratio of the observed to expected number of cancer
registrations up or down wind with the 95% confidence intervals were compared
for different cancers (Table 1).
There is a statistically different incidence (raised) downwind compared to
upwind for mouth and respiratory cancer, but no differences for combined
stomach and colorectal cancer.@
For the "false lines", the only significant result is a lower
incidence downwind for stomach and colorectal cancers. As can be seen in Figure
1, there are some small differences in the age distribution of the two
populations when down and up wind are compared as a ratio.@
There are similar problems with considering socio-economic status. This and age
has implications for smoking behaviour. This study is
now being expanded to cover the complete South and West Cancer Intelligence
Unit region - population 4.9 million compared to 1 million in Avon. @
The resulting increase in cancer registrations should reduce the confidence
intervals and allow correction factors to be added to account for the different
age distributions.
|
|
gFalse lines" in |
Cases |
Real lines in |
Cases |
All Cancers |
Downwind |
0.97 (0.94-1.00) |
4113 |
1.05 (1.02-1.08) |
4028 |
|
Upwind |
1.00 (0.97-1.03) |
|
1.00 (0.97-1.03) |
|
Mouth |
Downwind |
1.04 (0.80-1.28) |
58 |
1.43 (1.15-1.71) |
43 |
C00-C14 |
Upwind |
1.00 (0.73-1.27) |
|
1.00 (0.71-1.29) |
|
Respiratory |
Downwind |
1.04 (0.96-1.12) |
559 |
1.11 (1.02-1.20) |
530 |
C30-C37 |
Upwind |
1.00 (0.91-1.09) |
|
1.00 (0.92-1.08) |
|
Digestive |
Downwind |
0.91 (0.84-0.98) |
802 |
0.98 (0.91-1.05) |
762 |
C15-C26 |
Upwind |
1.00 (0.93-1.07) |
|
1.00 (0.93-1.07) |
|
Table 1: The incidence of cancer upwind or downwind of high voltage
powerlines. Observed/expected (95% C.I.) based on an estimate of population
(with the statistically significant differences in bold)@
ŠT—vF@‘—“dü‚©‚ç‚̃GƒAƒƒ]ƒ‹‚̉e‹¿‚Å”ŠàƒŠƒXƒN‚Ì‘‰Á‚ª‚È‚¢‚©Œ¤‹†A‘—“dü‚Ì•—ã‚ÉZ‚Þl‚É”ä‚ׂÄA•—‰º‚ÉZ‚Þl‚É‹Í‚©‚ÈŠà‚̃ŠƒXƒN‘‰Á‚ªŒ©‚ç‚ê‚éB@ƒŠƒXƒN‚Í1.05A1.11A1.43‚Æ‘å‚«‚‚Í‚È‚¢B@@
3-4:THE PLAUSIBILITY OF CO-CARCINOGENS FROM
COMBINED EXPOSURE TO@AUTOMOTIVE EMISSIONS AND
ELECTROMAGNETIC FIELDS.
H. Wachtel l , R.I. Pearson 2 . @
BACKGROUND: Several studies have linked proximity to high ampacity power
lines [very high current configuration (VHCC) wire codes] with elevated
childhood cancer risk—and thus implicated 60 Hz electromagnetic fields (EMF) as
the causal agent.
However, in these studies (
However, our recent observation of the interaction of traffic density and wire
code as risk factors (for childhood cancer) could explain both the wire code
paradox and the disparate results seen in studies based in different cities.@
A combined high exposure to EMF and a plausible initiator—such as mobile source
volatile organic compounds VOCs—may be better captured by the VHCC metric than
by the measured EMF levels. @
his co-exposure also may not be as prevalent in some cities (e.g., eastern
We are thus led to hypothesize that the basis of the elevated childhood cancer risk is the combination of EMF with
another factor, most likely related to air
pollution.
The purpose of the current exploration is to probe the extent to
which this hypothesis is supported—or refuted—by experimental results.@
RESULTS: There are several plausible models, derivable from whole
animal, tissue and cellular studies, that could explain co-carcinogenesis from
combined exposure to VOCs and postulated promoters such as EMFs. Such models
would apply not only to 60 Hz fields, but, perhaps more so, to RF and microwave
fields.@
CONCLUSION: The biological plausibility of co-carcinogenesis from combined
exposure to VOCs and a variety of EMFs (ELF, RF, microwave, etc)
appears to be more cogent than the notion of EMFs as a carcinogen per se. @
In addition to perhaps explaining the inconsistencies of the power line
epidemiological studies (the "wire code paradox" and the disparate
outcomes in different cities) this type of combined effect may pertain to other
"EMF plus VOC" exposure situations. @
For example, it may imply elevated cancer risks for hand-held cellular phones
used in the midst of high traffic or for locations proximal both to RF
transmitters and high traffic (or other air pollution) corridors.@
ŠT—vF@ƒƒCƒ„ƒR[ƒh‚ð—p‚¢‚½‘—“dü—R—ˆ‚ÌŽ¥ŠE‚ƬŽ™Šà‚Ì‘‰Á‚ÍAŽÀ‘ª‚ÌŽ¥ŠE‚Å‚ÍŒŸØ‚³‚ê‚È‚¢B@
ŠÂ‹«‚É‚¨‚¯‚éŒð’Ê—Ê‚ÉŠÖ˜A‚µ‚ăxƒ“ƒ[ƒ“‚È‚Ç‚Ì”Šà•¨Ž¿‚É‚æ‚锊à‚ÆŽ¥ŠE‚Ì‘ŠŒÝì—p‚É‚æ‚é‚à‚Ì‚Å‚ ‚é‚©‚à’m‚ê‚È‚¢B@‚»‚¤‚È‚é‚Æ‘—“dü—R—ˆ‚Ì“dŽ¥ŠE‚¾‚¯‚Å‚Í‚È‚¤Œð’Ê‚â‹ó‹C‰˜õ‚ÆŒg‘Ñ“d˜b‚©‚ç‚Ì“dŽ¥”g‚Æ‚Ì‘ŠŒÝŠÖ˜A‚È‚Ç‚Ì–â‘è‚ào‚Ä‚‚é‰Â”\«‚ª‚ ‚éB@
3-5:A METHOD FOR ASSESSING OCCUPATIONAL
EXPOSURE TO POWER-FREQUENCY@MAGNETIC FIELDS FOR
ELECTRICITY GENERATION WORKERS.
D. Renew, R.F. Cook*, M.C. Ball*. @
METHOD: The exposure assessment method for power station workers is
based, not on job title alone, as in many previous methods, but also on where
they worked in relation to the major sources of magnetic field.@
As a result account is taken of differences in power station layout and of
differences in operation conditions across the years. The most important source
is the very large current flowing in the main generator connections, and in
nearby overhead circuits. @
Using the 3D magnetic field computer program, EM2D, the average magnetic fields
resulting from these currents in specified areas of the power station were
modeled assuming rated currents were flowing. @
The average exposure of individuals within a particular job category, during a
particular year, takes account of the percentages of their time spent in each
area, the average magnetic field in each area and the load factor for the year
relative to continuous operation at rated load.@
CONCLUSION: The new method for assessing both current and historical
magnetic field exposures in power stations has been devised which takes account
of not only what job the person was doing but also where they worked in
relation to the major sources of magnetic field.
It has been demonstrated to give a good prediction of exposures and is
therefore suitable for estimating historical exposures for occupational
epidemiological studies.@
ŠT—vF@“d—͉ïŽÐ‚ɋΖ±‚·‚él‚Ì’áŽü”gŽ¥ŠE–\˜I—Ê‚Ì•]‰¿‚ÍA’P‚ÉE–±•\‚É‚æ‚炸AŽ¥ŠEŒ¹‚ª‚ ‚é‚Ç‚±‚Å“‚¢‚Ä‚¢‚½‚©‚ðl—¶‚·‚ׂ«‚Å‚ ‚é@
3-6:MAGNETIC-FIELD EXPOSURES OF GARMENT
WORKERS: RESULTS OF PERSONAL AND SURVEY MEASUREMENTS AND A PILOT INTERVIEW
STUDY. @
M.A. Kelsh 1, T.D.
Bracken 2, J.D. Sahl 3, M. Shum 1, K. Ebi 4.
METHODS: We measured exposures of garmentiˆß•žjworker to a range of extremely low
magnetic fields (MF) at a small sample-making facility in Southern California
and at a pants-making facility in New York.
In addition, we measured staged MF exposures near older sewing machines at a
used sewing machine distribution center in Los Angeles.@
Personal exposure (PE), and survey measurements were collected at all three
sites. Fixed-location transient measurements were collected at two of the three
sites.@
PE measurements were collected simultaneously at the waist and chest areas;
survey measurements were made at four body locations (head, chest, waist, and
knees) near 77 sewing machines of various types: machines with
alternating-current (AC) and direct-current (DC) motors, machines with both
110-V and 220-V motors, and near machines when idling and sewing.@
We conducted a pilot interview survey among 25 Chinese-speaking garment workers
at the
RESULTS: Average
personal exposure (PE) and survey measurements at the waist ranged from 0.04 to
3.1 mT.@
MF levels were higher for AC machines than the levels for DC machines. @
The field intensity increased moving down from the head, to chest, to waist, to
knees during both idling and sewing. @
Mean 60 Hz survey measurements for AC machines were 1.71, 1.22 and 0.46mT for
the used machine shop, the sample sewing facility, and the pants facility
respectively.
Among the Chinese garment workers interviewed, the mean age when workers first
started a sewing-related job was 30 and the mean number of years worked in a
sewing-related job was 13 years.@
These workers reported working an average of 37 hours per week. Sewing
activities consisted mainly of setting zippers and pockets, sewing skirts and
pants, and sewing waistbands. @
Although, most workers were able to distinguish whether the machines they had
used were automatic or not (a proxy for DC or AC technology), they were not
able to describe the voltage, motor type, or recall brand names of machines.@
ŠT—vF@ƒ~ƒVƒ“‚ðŽg—p‚µ‚Ä‚¢‚éˆß•žŽY‹Æ‚É“‚l‚Ì’áŽü”gŽ¥ŠE–\˜I‚𒲸‚µ‚½B˜‚ÌŠ‚Å‘ª’肵‚ÄA•½‹Ï‚Í0.04 ‚©‚ç 3.1 mT‚Å‚ ‚Á‚½B@@iƒRƒƒ“ƒgFICNIRP‚̈ê”ÊŒöO‚ɑ΂·‚鎥ŠE–\˜IŒÀ“x’l0.1mT‚ð’´‚¦‚Ä‚¢‚éj@
‚TDE‹Æ“I‚È–\˜I‚ÉŠÖ‚·‚錤‹†‚Ì’†‚©‚ç@
6-7: INVESTIGATION OF STRESS PARAMETERS IN
WORKERS WITH OCCUPATIONAL EXPOSURE TO STATIC AND 50 HZ MAGNETIC FIELDS.
B. Haugsdal, T. Tynes. @
MATERIALS and METHODS: Two groups of healthy men, all working in short
shift cycles, took part in this study. During work hours, all participants were equipped with a
magnetic field monitor, HI-3550@(Holaday Industries, Inc.), integrating
either static or 50 Hz fields respectively.
In the first group (Plant A) the
participants (n=9, mean age 47.0 +/- 7.9 years) were exposed to static magnetic fields under two conditions.
During one period, while working in the pot room, individual mean levels of
exposure were in the range of 2.3 - 4.9mT. During
another period, while working in the control room, the corresponding levels
were 0.58 - 2.0mT.
In the second group (Plant B), the study subjects (n=13, mean age 37.9 +/- 10.5
years) were exposed to 50 Hz
magnetic fields with individual mean levels of exposure in the range of 3.1
-78.8 µT.
At both plants urine was sampled daily at four time intervals, three
consecutive days with work at night, and one follow-up day with sleep at home.
In addition, a "control day" sampling was taken during a non-working
period separated by two weeks from the night work period.
The urine volume from each interval was measured and recorded, and a pair of 15
ml samples were transferred to coded bottles and frozen for later analysis.
From each pair of samples one was assayed for aMT6s in our previous study.@
In the present study the other one was assayed for two species indicative of
oxidative stress from lipid peroxidation (an isoprostan)
and cellular immune activation (a pterin), respectively. The isoprostane, 8-epi-prostaglandin F2 alpha (8-epi-PGFa), is formed from the free radical-catalyzed peroxidation of
arachidonic acid, mainly via a non-cyclooxygenase pathway. @
The pterin, neopterin, is an end product in a chain starting with the
activation of T-cells by stimuli like mitogenes and
antigens, including oxidation products from free radical reactions with low
density lipoproteins. @
The levels of 8-epi-PGFand
neopterin were determined by enzyme-linked immunosorbent assay (ELISA).
Statistical analysis was performed by the mixed procedure, SAS version 6.12
(SAS institute, Cary, N.C).@
RESULTS: For workers in plant A, a significant (p=0.003) elevation in
levels of 8-epi-PGFwas found
in the samples collected during the night work period in the pot room, but not
in the control room. @
The elevation did not correlate
with the level of static magnetic field exposure. No
significant changes in neopterin were observed in samples from any of the work
places with exposure to static fields.@
For workers at plant B, exposed
to 50 Hz magnetic fields, a significant elevated level (p=0.04) of neopteriniƒlƒIƒvƒeƒŠƒ“‚Ƃ͉½Hj but not 8-epi-PGF
was found.@
ŠT—vF@èÎŽ¥ŠE2.3 - 4.9mT‚É–\˜I‚µ‚½ê‡‚ÍŽ¥ŠE‚̉e‹¿‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½‚ªAŒð—¬Ž¥ŠE3.1 -78.8 µT‚É–\˜I‚µ‚Ä‚¢‚éŒQ‚ł̓lƒIƒvƒeƒŠƒ“‚ɕω»‚ªŒ©‚ç‚ꂽB@
P-16:VALIDATION OF AN EXPERT JUDGEMENT
ASSESSING OCCUPATIONAL EXPOSURE TO 50 HZ MAGNETIC FIELDS USED IN AN
EPIDEMIOLOGIC STUDY CONCERNING REPRODUCTIVE DISORDERS IN RELATION TO PARENTAL
OCCUPATION.
K.G. Blaasaas 1,@T. Tynes 2. @
The objective of this study is to validate an expert judgement assessing
occupational exposure to 50 Hz
magnetic fields used in an epidemiologic study concerning reproductive disorder
in relation to parental occupation.@
In order to assess the parents occupational
exposure, we organized an expert panel to assess exposure to magnetic fields
using a practical modification of a method described by Flynn et al. (1991)
adapted to Norwegian conditions.
The expert panel consisted of one occupational physician, one physicist and two
industrial hygienists, all with several years of experience in use of
measurements of electromagnetic fields and occupational exposure. @
The members of the expert panel first made their own classification of
combinations of industrial branch and occupation into one out of three exposure
levels quantified by hours per week in a potential magnetic field above a
background level. @
The following exposure categories were used: less than four hours per week, 4 -
24 hours per week and above 24 hours per week above background level. @
The panel then met and discussed their results.. The background field was not
quantified, but was expected to be similar to office environments or homes, in
To validate these expert judgments we let workers in selected occupations wear
an Emdex II Standard dosimeter in a belt around their
waist during full working
shifts. @
The Emdex II
Standard dosimeter measures magnetic fields in the range 0.01 to 300 mT with bandwidth 40 - 800 Hz. We use a sampling rate of 10
seconds, and only the resultant field is monitored. @
Until now 15 different occupations have been measured; six from the lowest
exposure category, five from the intermediate category and four from the
highest category. 64 different workers carried the dosimeter through 133
working shifts. @
The analysis so far indicates that some of the occupations are classified in a
too low exposure category by the expert panel.@
ŠT—vF@ŠeŽíE‹Æ‚ÉŠÖ‚µ‚Ä’áŽü”gŽ¥ŠE–\˜I—Ê‚Ì’²¸‚ðs‚Á‚Ä‚¢‚éÅ’†‚Å‚ ‚éB@
‚UD‚»‚Ì‘¼@‹»–¡‚Ì‚ ‚錤‹†‚©‚ç@
ƒƒqƒg‚̃ƒ‰ƒgƒjƒ“„@
SESSION 6: HUMAN STUDIES@
6-1:NOCTURNAL PLASMA MELATONIN LEVELS IN HUMANS ARE NOT REDUCED UNDER@THE INFLUENCE OF WEAK 50 HZ MAGNETIC FIELDS AND MUSIC WHEREAS THEY
ARE UNDER THE INFLUENCE OF LIGHT.
J. Reißenweber, R.
David*, E. David, M. Pfotenhauer*.@
METHODS: 20 healthy volunteers of both sexes, aged from 21 to 34, were
included into the study and exposed during one night from
Blood samples were taken at
PMLs were measured by radioimmunoassay (RIA) kits. Additionally, 7 healthy
volunteers of both sexes, aged from 21 to 32, were – instead of magnetic fields
- exposed to light-at-night of an illumination intensity of 200 lux and 6
healthy volunteers of both sexes, aged from 22 to 32, were - instead - exposed
to music of a sound pressure level of 60 dB (A), respectively.@
RESULTS and DISCUSSION:
The results show that neither at 10 p.m. nor at 2 a.m. nor at 6:30 a.m. a
significant reduction of PMLs can be observed under field exposure condition
versus control nights and@versus
music of a sound pressure level of 60 dB (A).
Light-at-night, however, is able to significantly reduce PMLs – an expected
finding which confirms the validity of the experimental design used. These results do not support the melatonin
hypothesis of electromagnetic field effects in humans and are compatible with
many fold findings of Graham et al. in 60 Hz magnetic fields.@
CONCLUSION: Radio-immunologically
determined nocturnal plasma melatonin levels in healthy human volunteers are
not reduced under the influence of 50 Hz magnetic flux densities of 100 mT and music of a sound pressure level of 60 dB (A) whereas
they are lower under the influence of light (illumination intensity: 200 lux) –
as was to be expected from the physiological point of view.@
ŠT—vF@50Hz
100ƒÊ‚s‚ÌŽ¥ŠE‚É–éŠÔ–\˜I‚µ‚Ä‚àAƒqƒg‚ÌŒŒ’†ƒƒ‰ƒgƒjƒ“‚̃Œƒxƒ‹‚͕ω»‚µ‚È‚¢B@‚±‚ê‚Í‘¼‚ÌŒ¤‹†Œ‹‰Ê‚ðŽxŽ‚µ‚È‚¢B@
ƒ0.1ƒÊT‚Æ‚¢‚¤”÷Žã‚ÈŽ¥ŠE‚ւ̉e‹¿‚ÌŒ¤‹†„
8-2:BEHAVIOURAL STRESS RESPONSES OF MICE MAY BE SENSITIVE TO WEAK,
AMBIENT ELF MAGNETIC FIELDS ON THE ORDER OF 0.1uT
F.S. Prato, E. Choleris*+,
A.W. Thomas*, G.R. Moran*
ŠT—vF‘l‚Í0.1ƒÊTˆÈ‰º‚Ì”÷‚Ȍ𗬎¥ŠE‚ÉŠ´Žó«‚ðŽ‚Á‚Ä‚¢‚é‰Â”\«‚ª‚ ‚éB@
P-10:LUNG CANCER (”x‚ª‚ñ)RISK ESTIMATE
IN PEOPLE LIVING NEAR HIGH VOLTAGE POWERLINES.
P. Fews, R.J. Wilding*,
N.K. Holden*, P.A. Keitch*, D.L. Henshaw. H H Wills @
RESULTS: Space charge measurements near power lines suggest a lower
limit to charge densities in the atmosphere in the range 2,000 – 3,000 cm -3 ,
corresponding to respective lower and upper limits to aerosol@charging of 7% and 42%.
A charge density of 2,500 cm -3 and aerosol density of 15,000 cm -3 would
correspond to 17% charging to which the population near power lines might on
average be exposed.
The 99 results of Cohen et al (1988) suggest that single charges on 125
nm aerosols might lead to a 2-fold increase in total lung deposition.
If this result is applied to all aerosols in the peak of the number
distribution, lung cancer risk might be similarly increased.
For 17% aerosol charging, the increased lung cancer risk would lie@in the range 34% to 57%.
Extrapolated across the UK this corresponds to between 255 and 428 lung cancer
cases annually assuming exposure out to 400 m downwind of power lines. Such an
effect might be detectable in an epidemiological study.@
ŠT—vF@‚ˆ³‘—“dü‚©‚ç‚̃GƒAƒƒ]ƒ‹‚ÅA”x‚ª‚ñ‚ð—U”‚·‚é‚Ì‚Å‚Í‚È‚¢‚©@‚Æ‚¢‚¤Œ¤‹†B@i‚±‚Ì—\eW‚¾‚¯‚Å‚Í@‚æ‚”»‚ç‚È‚¢Bj@
P-11:CHILDHOOD CANCER, LEUKAEMIA AND
PROXIMITY TO CELL PHONE BASE STATIONS IN SOUTH-WEST ENGLAND.
E. Dunn, M.G. Wright*, J. Eavis*,
A.W. Preece.
METHODS: A case-control format is being used with 130 recently diagnosed childhood brain tumour and leukaemia cases, with
their controls (matched by gender, ethnicity and age), in the South West of
England.@
The main phase of data collection occurred with a visit to the family home
using interviews, questionnaires and a field survey. Exposure is categorized in
two ways.@
1. A comprehensive measurement of the radio-frequency field levels for a 10%
subset of the subjects at different distances from base stations. @
A spectrum analyzer is used to measure open air exposure of the residence from
all sources of RF (broadcast and cell phone) and an internal survey of the home
to examine the attenuation due to the fabric, compared with data supplied by
the phone providers of estimated field strength at that grid reference. @
The feasibility of using a modified Nokia cell phone, with digitally reported
signal strengths will be examined, using a card for each of the four UK
providers.@
2. All postcodes within 1km of residences (case and control) will be compared
with company databases for the presence of base stations together with the date
of commencement of operation. An in-house software package will compute
distance of the residences to all base stations.
DISCUSSION: It was observed during the ELF study data collection that
base stations were of particular concern to the parents of case children.
This concern has been prompted largely by the media and the recommendations of
the Stewart Committee 3 that base stations should not be sited on schools (even
though this recommendation is for risk perception and public acceptability
purposes). @
In addition an investigation into the risk perception of base stations
completed in this department showed that those with most concern lived near an
existing site. This
work is currently ongoing and we would welcome comments on the methodology.
ŠT—vF@ƒCƒMƒŠƒX‚É‚¨‚¢‚ÄŒg‘Ñ“d˜b‚Ì’†Œp“ƒ‚©‚ç‚Ì“dŽ¥”g‚ƬŽ™Šà‚ÌŠÖŒW‚ÌÇ—á‘ÎÆŒ¤‹†‚ðŽn‚ß‚½B@
ƒ“ú–{‚ÌŒ¤‹†AŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚Ì”ƒKƒ“«„
P-48:1.5 GHZ ELECTROMAGNETIC NEAR FIELD DOES NOT PROMOTE 7,
12-DIMETHYLBENZ[A]ANTHRACENE - INITIATED MOUSE SKIN CARCINOGENESIS.
K. Imaida*1, K. Kuzutani*1, J. Wang*2, O.
Fujiwara*2, T. Shirai*1.
Effects of 1.5GHz electromagnetic near field, used for
cellular phone, were examined on mouse skin carcinogenesis initiated by
7,12-dimethylbenz[a]anthracene (DMBA).@
ICR-1, 10-week-old, female mice were treated with a
single application of DMBA on shaved back skin by painting at concentration of
100 mg / 100 ml acetone per mouse. One week later, mice were divided into 4
groups, electromagnetic field exposure (EMF) group, sham-exposure group,
12-O-tetradecanoylphorbol-13-acetate (TPA, 4.0 mg / 200 ml acetone / mouse) as
a positive control group of skin tumorigenesis, and non-treatment control.@
EMF near field exposure conditions are as follows: skin local peak specific
absorption rate (SAR) 2.0 W/kg, whole body average SAR 0.084 W/kg (ratio of
peak to average SAR is 24), 90 minutes exposure/day, 5 days/week, for 19 weeks.
@
The incidences of skin tumors in DMBA-EMF, DMBA-Sham, DMBA-TPA and DMBA-control
are 0/48, 0/48, 29/30 (96.6%) and 1/30 (3.3%).
The incidences of papillomas and squamous cell
carcinomas in DMBA-TPA and DMBA-control groups are 29/30 (96.6%) and 2/30
(6.7%), respectively.@
The numbers of tumors per mouse (multiplicity) in these groups are 18.8 + 13.4
and 0.1 + 0.5, respectively.@
EMF exposure did not exert any
enhancing effect on skin tumorigenesis compared to sham group, although TPA, a positive control, clearly showed promoting effects.@
These data clearly demonstrated that 1.5GHz EMF, used for cellular phones, did
not promote mouse skin tumorigenesis initiated by DMBA.@
ŠT—vF@Œg‘Ñ“d˜b‚Ì“dŽ¥”g‚Í”Šà«‚ª‚È‚©‚Á‚½B@
P-72:DOUBLE-BLIND CONTROLLED TRIAL OF A
MAGNETIC BRACELET CLAIMED TO REDUCE PAIN ASSOCIATED WITH ARTHRITIS. @
R. Coghill. Coghill Research Laboratories, Lower
Race, GWENT, NP4 5UH, UK.@
Clinical trials of magnetic fields of less than 2T on human subjects or
patients are few in the West, but have been reported widely for some decades in
the former USSR, other eastern bloc countries, and in the far East.@
In the
This study examined the
effectiveness of a static magnetic bracelet in reducing pain from arthritis(ŠÖ߉Š) in 47 subjects. @
Given the promise of static magnets indicated by cellular and live animal
studies and their comparative absence of side-effects, coupled with the large
number of eastern bloc clinical studies reporting significant benefits and the
variety of devices on the market place, it is surprising that so few trials
have been conducted. This study aimed to begin filling this gap in scientific
knowledge.@
RESULTS: The results suggested that the effect of the magnetic bracelet
on pain severity is confined largely to locations nearest the bracelet, with
more distant locations being less affected. @
Statistical analysis:@
The null hypothesis applied was that there should
be no difference between the extent of subjective improvement on any part of
the body if the effect is a purely placebo effect.
The alternative hypothesis is that those parts nearest the magnetic fields
should show the greatest reduction in pain intensity. @
It was assumed that wrist, arm, and hand are nearer and ankle, knee, and back
are distant for the purpose of analysis:@
Table 1 Comparison of locations exposed nearest the bracelet with
those more distant
a) Nearer locations: |
At outset |
At completion |
% change |
Means: |
2.90 |
1.92 |
-33.8 |
Std. Devn. |
0.27 |
0.36 |
9.5 |
b)More distant locations: |
|
|
|
Means: |
3.04 |
2.55 |
-16.1 |
Std. Devn. |
0.41 |
0.33 |
11.5 |
CONCLUSIONS: The constant use for three
weeks of a proprietary gold-plated bracelet containing static magnets with a
field strength of around
100-260 gauss on average appears to exert a statistically significant localized
pain relief effect compared with a wide variety of
existing medications which panel members continued to take during the trial
three week period.
The most pronounced improvements in pain relief were experienced in locations
nearest to where the bracelet was worn (hands, wrists and arms), showing an162
average reduction in pain intensity of approximately one third compared with a
pain reduction of approximately one sixth to the more distant body locations
(knee, back, and ankle). @
The reduction in pain relief does not appear to be related to the level of
magnetic field strength of the bracelet, which possibly indicates the value of
continuously wearing a product which creates a magnetic field for the wearer.
The study had sufficient statistical power to detect a 50 percent difference,
indicating that the results shown by this study were significant. @
I am grateful to Magna Jewellery Ltd. for financial
assistance with this research.@
ŠT—vF‚P00\260ƒKƒEƒX’ö“x‚ÌèÎŽ¥‹C‚Å’É‚Ý‚ª˜a‚ç‚¢‚¾B@
iƒRƒƒ“ƒgF@“ú–{‚ÌŽ¥‹CƒlƒbƒNƒŒƒX‚ÌŒø‰Ê‚Æ“¯‚¶‚±‚ÆB@’A‚µ–{—ˆ‚Ì‚±‚ÌŽí‚̃eƒXƒg‚Í“ñd–ÓŒŸ–@‚Ås‚¤•K—v‚ª‚ ‚éBj@
14-2:SHIELDING EFFECTIVENESS OF RF PROTECTIVE
CLOTHING NEAR AN AM RADIO TOWER: USEFULNESS OF BODY CURRENT EVALUATIONS.
D. Conover.
Workers are commonly exposed near AM radio antenna towers. Workers receive the
highest exposure when they are close to these RF sources, e.g., in the cases of
antenna tower climbers and other maintenance@workers,
who must work very close to the RF antenna.
RF protective clothing is
sometimes used to reduce worker exposure from AM towers. However, standardized
methods do not exist to determine the shielding effectiveness of RF protective
clothing.
In addition, existing exposure assessment methods
(i.e. field strength measurements) provide erroneous results when evaluating
the shielding effectiveness of RF 80 protective clothing.
Induced body current technology shows promise for determining the shielding
effectiveness of RF protective clothing.@
RESULTS: The survey results indicate that the RF protective clothing is
effective in reducing worker exposure (ankle and wrist current).
Wearing the protective suit, socks and gloves reduced the ankle current by a
factor of 2.6X (8.3 dB). In addition, adding the hood further reduced the ankle
current [up to 4.3X (12.7 dB)].
Wrist current was reduced by a factor of 3.5X (10.9 dB) when wearing the suit,
socks and gloves. For some exposure conditions, ankle and wrist current
reduction factors could not be determined because current readings were not
detectable (i.e. below approx. 1mA). @
CONCLUSIONS: Using an induced body current method provided convenient
and reliable evaluations of shielding effectiveness for one brand of RF
protective clothing tested. @
In contrast, existing field strength methods cannot be used to evaluate the
shielding effectiveness of RF protective clothing because these methods have
consistently given unreliable results.@
Induced current measurements
indicated that the RF protective clothing was effective in reducing worker
exposure (ankle and wrist current). @
Improved current detection sensitivity is
needed so that shielding effectiveness can be determined for exposure
conditions with low induced current (i.e. below approximately 1 mA).
This is particularly true when determining wrist current reduction and when
wearing full protective clothing (suit, socks, gloves and hood). @
In addition, further study is needed on the variation of shielding
effectiveness with the degree of contact (snugness of fit) and amount of
overlap between the pant leg and conductive sock as well as between the sleeve
and conductive glove. @
Finally, more field testing is needed to address additional RF sources and
exposure conditions as well as the effectiveness of other types of RF
protective clothing material.@
ŠT—vF@•ú‘—ƒ^ƒ[“™‚Ì•ÛŽç‚ׂ̈ɋ‚¢“dŠE‚É–\˜I‚·‚éì‹ÆŽÒ‚ׂ̖̈hŒì•ž‚Ì–hŒì‹@”\‚ð”@‰½‚É‘ª’è‚·‚é‚©‚ðŒŸ“¢‚µ‚½B@—U“±“d—¬‚𑪒肷‚é‚Ì‚ª—Ç‚¢B@
‹LF‚Q‚O‚P‚X|‚P‚Q|‚Q‚P
‹»–¡[‚¢Œ¤‹†“™‚ðЉ‚éB
‚»‚Ì1j
ƒ^ƒCƒgƒ‹F1-2FPHOSPHORYLATION OF
HSP27 - THE MOLECULAR MECHANISM FOR MOBILE PHONE RADIATION-INDUCED INCREASE IN
BLOOD-BRAIN BARRIER PERMEABILITY.
HSP27‚̃Šƒ“Ž_‰»FŒg‘Ñ“d˜b‚Ì“d”g‚É‚æ‚Á‚Ä—U‹N‚³‚ê‚é”]ŠÖ–哧‰ß«‚Ì•ªŽqƒŒƒxƒ‹‚Ì‹@˜
Œ¤‹†ŽÒFD. Leszczynski.
Bio-NIR Research Group, Radiobiology Laboratory, STUK - Radiation and Nuclear
Safety Authority, Helsinki, Finland
OBJECTIVE: –Ú“I
To determine whether physiological responses of endothelial cells, which are
associated with the hsp27 phosphorylation and might affect permeability of
blood-brain barrier (stability of stress fibers, cell size/shape), occur in the
mobile phone radiation exposed cultures of human endothelial cells.
ƒqƒg‚Ì“à”ç×–E‚Ì”|—{‚ÉŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ð”™‚Æ‚µ‚½ŽžAHsp27‚̃Šƒ“Ž_‰»‚ÉŠÖ˜A‚·‚é“à”ç×–E‚̶—Šw“I‚ȉž“š‚©A”]ŠÖ–哧‰ß«‚ɉe‹¿‚·‚é‚Ì‚©A‚¢‚¸‚ê‚©‚Å‚ ‚é‚Ì‚©Œ¤‹†‚·‚éB
METHODS: •û–@
Human endothelial cell line EA.hy926 cells, grown on microscope cover slides,
were exposed for 1h to 900MHz GSM signal at an average SAR of 2W/kg.
Œ°”÷‹¾—p‚̃vƒŒƒpƒ‰[ƒgiƒKƒ‰ƒXƒXƒ‰ƒCƒhj‚Ìã‚É”|—{‚µ‚½ƒqƒg—R—ˆ‚Ì“à”ç×–EEA.hy926‚𕽋ÏSAR2.0W/kg‚Ì900MHzGSM“d˜b‚Ì“d”g‚É1ŽžŠÔ”˜˜I‚µ‚½B
Temperature of cell cultures remained throughout irradiation period at 37+0.3Ž thus the effects reported here are of non-thermal nature.
”|—{Ší‚̉·“x‚ÍA”˜˜I’†‚ð’Ê‚µ‚Ä37+0.3Ž‚ɧŒä‚µ‚½‚Ì‚ÅA‚±‚±‚Å‚Í”ñ”MŒø‰Ê‚𒲂ׂéB
RESULTS AND DISCUSSION: Œ‹‰Ê‚ÆlŽ@
As expected, 1h exposure of cells to mobile phone radiation increased expression
of hsp27.
However, in order to increase hsp27 expression by heat shock was required 3h incubation
of cells at 43Ž (1h exposure had no effect).
—\‘z‚Ç‚¨‚èA×–E‚Ö‚ÌŒg‘Ñ“d˜b‚Ì“d”g”˜˜I1ŽžŠÔ‚ÅAHSP27‚Ì”Œ»‚Í‘‰Á‚µ‚½B
”MƒVƒ‡ƒbƒN‚É‚æ‚éHSP27‚Ì‘‰Á‚ÍA43Ž‚Ì×–E”|—{Ší‚Å3ŽžŠÔ‚ð—v‚·‚éi1ŽžŠÔ‚ł͉e‹¿‚Í‚È‚¢jB
This observation, together with the measurements showing that temperature of
medium was throughout RF-EMF exposure period at 37+0.3Ž,
suggest that the observed here effects are of non-thermal nature.
–{ŽÀŒ±‚Í”˜˜I’†‚ðŠÜ‚ÞŽÀŒ±’†‚Í”|—{‰t‚̉·“x‚ð37+/-0.3Ž‚ɧŒä‚µ‚½‚Ì‚ÅA‚±‚ÌŽÀŒ±Œ‹‰Ê‚Í”ñ”MŒø‰Ê‚ÆŒ¾‚¦‚éB
BEMSJ’F”ñ”MŒø‰Ê‚Æ‚¢‚¤‚ªA—â‹p‚µ‚È‚¯‚ê‚΂±‚Ì”˜˜I‚Å×–E‚̉·“x‚Í‚Ç‚Ì’ö“x‚Ü‚Å㸂·‚é‚Ì‚Å‚ ‚낤‚©H’Pƒ‚É”M‚Ì”¶‚Ì‚È‚¢ó‘Ô‚Å‚ÌŽÀŒ±Œ‹‰Ê‚È‚Ì‚©A×–E‚͉·“x‚ªã‚ª‚邪A—â‹p‚É‚æ‚Á‚ĉ·“x‚͈ê’è‚É•Û‚½‚ꂽ‚Ì‚ÅŒ‹‰Ê‚Å‚ ‚낤‚©H‚±‚̘_•¶‚¾‚¯‚Å‚Í‚í‚©‚ç‚È‚¢B
‚»‚Ì2j
ƒ^ƒCƒgƒ‹F1-4FEFFECTS OF ELF AND MICROWAVES ON HUMAN LYMPHOCYTES
FROM HYPERSENSITIVE PERSONS.
“dŽ¥”g‰ß•qǎ҂̃qƒgƒŠƒ“ƒp‹…‚Ö‚Ì’áŽü”g‚ƃ}ƒCƒNƒ”g‚̉e‹¿
Œ¤‹†ŽÒFI. Belyaev,
L. Hillert, C. Tamm, M. Harms-Ringdahl,
et al:
Department of Genetic and Cellular Toxicology, Stockholm University, Stockholm,
Sweden;
OBJECTIVEF–Ú“I
Here, we used specific conditions of exposure to ELF to investigate if the
response of lymphocytes from hypersensitive persons is different as compared to
healthy subjects.
We also used GSM modulated microwaves, which have been previously shown to
affect brain blood barrier in rats.
‰äX‚ÍA“dŽ¥”g‰ß•qǎ҂̃Šƒ“ƒp‹…‚̉ž“š‚ªŒ’N‚Èl‚̉ž“š‚Æ·ˆÙ‚ª‚ ‚é‚©‚ðŽÀŒ±‚·‚邽‚ß‚É‚Æ‹vêj’áŽü”g“dŽ¥ŠE”˜˜IðŒ‚ðݒ肵‚½B
‚Ü‚½A‰äX‚ÍA‰ß‹Ž‚ÌŽÀŒ±‚щƒbƒg‚Ì”]ŠÖ–å‚ɉe‹¿‚ªŒ©‚ç‚ꂽGSMŒg‘Ñ“d˜b‚Ì“d”g‚à—p‚¢‚½B
MATERIALS AND METHODS: ŽÀŒ±•û–@
Fresh blood samples from two groups of donors, 7 persons reporting electro sensitivity
and 7 healthy controls matched by gender, age and smoking habits were coded and
all data were analyzed in blind.
V‘N‚ÈŒŒ‰t‚ð2ŒQ‚Ì’ñ‹ŸŽÒ‚©‚瓾‚½A“dŽ¥”g‰ß•qÇ‚ÆŽå’£‚µ‚Ä‚¢‚é7–¼‚ÆA«•ÊE”N—îE‹i‰Œó‹µ‚ðˆê’v‚³‚¹‚½7–¼‚ÌŒ’íŽÒ‚©‚çB‘S‚Ä‚ÌŒŒ‰t‚̓R[ƒh‰»‚µA–ÓŒŸ–@‚ÅŽÀŒ±‚ðs‚Á‚½B
Sinusoidal magnetic field (8Hz, 30mT amplitude or 50Hz, 15mT amplitude) was applied
using Helmholtz coils.
Installation employing GSM signal, 915 MHz, all modulations
included, SAR=1-2mW/g in the TEM cell was used. All exposures were 2h.
ƒwƒ‹ƒ€ƒzƒ‹ƒcƒRƒCƒ‹‚ðŽg‚Á‚ijŒ·”g‚ÌŽ¥ŠEi‚WHz 30mT ‚à‚µ‚‚Í50Hz 15mTj‚𔘘I‚µ‚½B
915MHzA‚·‚ׂĂ̕ϒ²‚ðŠÜ‚ß‚ÄASAR‚Í1-2mW/g‚ÌGSM“d”g‚ðATEMƒZƒ‹‚ð—p‚¢‚Ä”˜˜I‚µ‚½B
CONCLUSIONS: The data suggested that ELF magnetic fields and microwaves under
specific conditions of exposure affect lymphocytes from healthy and
electrosensitive donors.
’áŽü”g“dŽ¥ŠE‚ƃ}ƒCƒNƒ”g“d”g‚Ö‚Ì”˜˜I‚ÍAŒ’íŽÒ‚Æ“dŽ¥”g‰ß•qÇŽÒ‚©‚ç‚ÌŒŒ‰t‚Ö‚Ì”˜˜I‚͉e‹¿‚ª‚ ‚Á‚½‚Æ‚¢‚¤ƒf[ƒ^‚Å‚ ‚Á‚½B
ELF under specific conditions of exposure resulted in apoptotic
DNA fragmentation.
“ÁˆÙ‚ÈðŒ‰º‚Ì’áŽü”g”˜˜I‚ÍAƒAƒ|[ƒgƒVƒX‚µ‚½DNA‚Ì”jÓ‚Æ‚¢‚¤Œ‹‰Ê‚Å‚ ‚Á‚½B
These effects differ at different frequencies and vary between donors.
‚±‚̕ω»‚ÍŽü”g”‚É‚æ‚Á‚ĈقȂèAŒŒ‰t‚Ì’ñ‹ŸŽÒŠÔ‚Å‚àˆÙ‚È‚Á‚½B
In some cases, cells from electrosensitive donors responded stronger than cells
from gender- and age-matched control subjects, but the results need to be
confirmed in a larger study group.
Šô‚‚©‚̃P[ƒX‚Å‚ÍA“dŽ¥‰»‰ß•qÇŽÒ‚©‚ç‚ÌŒŒ‰t‚ªA«•ÊE”N—î‚𒲘a‚³‚¹‚½‘ÎÆŽÒ‚æ‚è‚àA‹‚¢”½‰ž‚ðŽ¦‚µ‚½‚±‚Æ‚à‚ ‚èA‚æ‚è‘å‚«‚ÈW’c‚Å‚ÌŠm”FŽÀŒ±‚ª•K—v‚Å‚ ‚é‚Æ‚¢‚¤Œ‹˜_‚Å‚ ‚éB
BEMSJ’F“dŽ¥”g‰ß•qÇ‚ÌŒ¤‹†‚Æ‚µ‚Ä‚ÍA’áŽü”gŽ¥ŠE‹“x15‚‚si150ƒKƒEƒXj‚Í‹‚·‚¬‚éB
ICNIRP‚Ì50HzŽ¥ŠE”˜˜IŠî€’l0.2mT‚Ì75”{‚à‹‚¢A‚±‚ê‚Å‚ÍŒ’íŽÒ‚Å‚à‰e‹¿‚ðŽó‚¯‚邱‚Æ‚É‚È‚è‚©‚Ë‚È‚¢B
‚»‚Ì‚Rj
ƒ^ƒCƒgƒ‹FSTATIC MAGNETIC FIELD HAS LITTLE EFFECT FOR GENE EXPRESSION AND LIGATION EFFICIENCY
IN INVITRO.
ÃŽ¥ŠE‚͈â“`Žq”Œ»‚ƃCƒ“ƒrƒgƒ‚É‚¨‚¯‚錋ãFŒø—¦‚ɉe‹¿‚µ‚È‚¢B
Œ¤‹†ŽÒFT. Nakahara1*, M. Yoshida*,
J. Miyakoshi.
Department of Radiation Genetics, Graduate School of Medicine, Kyoto
University, Kyoto 606-8501, Japan.
’FligationFŒ‹ãFi‚¯‚Á‚³‚Âj‚ÍAˆã—Âɂ¨‚¢‚Ä‚ÍAŠO‰È“Iˆ’u‚ÌÛ‚É—p‚¢‚ç‚ê‚ég‘̂̈ꕔ‚âˆã—Ë@Ší‚ð”›‚Á‚ČŒ肷‚é‹Zp‚Ì‚±‚ÆBŽš‚̈Ӗ¡‚Íu‚Þ‚·‚ÑA‚©‚ç‚°‚év‚±‚Æ‚Å‚ ‚邪Aˆã—Âɂ¨‚¢‚Ä‚Í“Á’è‚Ì‹Zp‚ðŽ¦‚·B
OBJECTIVE: –Ú“I
Firstly, we attempt to clear whether strong SMF can affect a specific gene
expression.
We have done DNA microarray analysis.
ʼn‚ɉäX‚Í‹‚¢ÃŽ¥ê‚ª“Á’è‚̈â“`Žq”Œ»‚ɉh—{‚·‚é‚©‚𖾂炩‚É‚·‚邱‚Æ‚É‚µ‚½B
‰äX‚Í‚c‚m‚`ƒ}ƒCƒNƒƒAƒŒƒC‰ðÍ‚ð—p‚¢‚½B
Then, one of gene expressions changing by exposure to strong SMF is analyzed by
RT-PCR and western blotting.
To clear mechanisms enhancing the X-ray-induced micronucleus formation by
exposure to strong SMF, we have examined effects of SMF on ligation reaction in
in vitroD
‚»‚µ‚ÄA‹‚¢ÃŽ¥ê‚Ö‚Ì”˜˜I‚É‚æ‚Á‚Ĉâ“`Žq”Œ»‚ª•Ï‰»‚µ‚½ˆâ“`Žq‚ðAPT-PCR–@‚ʼnðÍ‚ðs‚Á‚½B
‚wü‚Å—U“±‚³‚ꂽ”÷¬ŠjŒ`¬‚ª‹‚¢ÃŽ¥ê”˜˜I‚É‚æ‚Á‚Ä‹’²‚³‚ê‚郃JƒjƒYƒ€‚𖾊m‚É‚·‚邽‚ß‚ÉAƒCƒ“ƒrƒgƒ‚É‚¨‚¯‚錋ãFŒø—¦‚ÌÃŽ¥ê‚É‚æ‚é‰e‹¿‚ðŒŸ“¢‚µ‚½B
METHODS: To assay the change of gene expression, we used UniGEM
Human V Ver. 2.0 (IncyteGenomics) as a DNA
microarray.
•û–@Fˆâ“`Žq”Œ»‚̕ω»‚ð‰ðÍ‚·‚邽‚ß‚ÉA‰äX‚ÍADNAƒ}ƒCƒNƒƒAƒŒ[‚Æ‚µ‚ÄUniGEM‚ðŽg—p‚µ‚½B
Human glioma cell line MO54 after SMF-exposure or sham exposure (6 hours) were
used as a mRNA source.
ÃŽ¥ê”˜˜I‚à‚µ‚‚Í‹^Ž—”˜˜IŒã‚ÉAƒqƒg_ŒoäPŽî—R—ˆ‚Ì×–EŠ”MO54‚ðAmRNA‚̃\[ƒX‚Æ‚µ‚ÄŽg—p‚µ‚½B
CONCLUSIONS: We found a little difference in gene expression by using DNA
microarray analysis.
These data suggest that strong SMF, up to 10T, had a little biological effect
in cultured cells.
Œ‹˜_F‰äX‚ÍADNAƒ}ƒCƒNƒƒAƒŒ[‰ðÍ‚ðŽg‚¤‚±‚Æ‚ÅAˆâ“`Žq”Œ»‚ɬ‚³‚ȕω»‚ðŒ©o‚µ‚½B
‚±‚ÌŒ‹‰Ê‚ÍA10T‚É‹y‚Ô‹‚¢ÃŽ¥ê‚ÍA×–E‚Ì”|—{‚Ì’†‚ÅA¬‚³‚ȶ‘̉e‹¿‚ª‚ ‚邱‚Æ‚ðŽxŽ‚µ‚Ä‚¢‚éB
‚»‚Ì4j@@
ƒ^ƒCƒgƒ‹F7-3FFDTD DERIVED SAR DISTRIBUTIONS IN VARIOUS SIZE HUMAN HEAD MODELS EXPOSED
TO SIMULATED CELLULAR TELEPHONE HANDSET TRANSMITTING 600mW AT 835‚lHz.
835MHz‚Å600‚‚v‚ÌŒg‘Ñ“d˜b’[––‚©‚ççtŽË‚³‚ê‚é“d”g‚ð–Í‹[‚µ‚½“dŽ¥ŠE”˜˜I‚ɑ΂·‚éŠeŽíl‘̃‚ƒfƒ‹‚É‚¨‚¯‚éSAR‚Ì•ª•z‚ÌFDTD‚É‚æ‚é‰ðÍ
Œ¤‹†ŽÒFA.W. Guy, C.K. Chou, and G. Bit-Babik.
University of Washington (Emeritus), Seattle,@WA 98195,
USA.
Motorola Florida Research Laboratories, Fort Lauderdale, Florida 33322, USA.
INTRODUCTION: Gandhi
et al. (1996) have shown higher peak SARs and deeper penetration in smaller head
models exposed to cell phones.
Schönborn et al. (1998) found no significant
differences between adults and children.
Gandhi and Kang (2001) reconfirmed their 1996
observations.
Gandhifs results have been widely cited by the media and used by many as one of the reasons that children should minimize using cell phones.
Gandhi‚ç‚Í1996”N‚ÉAŒg‘Ñ“d˜b’[––‹@‚©‚ç‚Ì“d”g‚ɬ‚³‚¢“ª‚Ì“ª•”ƒ‚ƒfƒ‹‚É‚¨‚¢‚ÄA‚æ‚è‚‚¢‚r‚`‚q‚ÆA‚æ‚è[‚¢Z“§[‚³‚ð•ñ‚µ‚½B
Schönborn‚ç‚ÍŽq‹Ÿ‚Æ‘ål‚ÌŠÔ‚ÉA—LˆÓ‚È·ˆÙ‚Í‚È‚¢‚±‚Æ‚ðŒ©o‚µ‚½B
Gandhi and Kang‚Í1998”NA1996”N‚̔ނç‚ÌŠÏŽ@‚ÌÄŠm”F‚ð‚¨‚±‚È‚Á‚½B
Gandhi‚ÌŒ‹‰Ê‚ÍAƒƒfƒBƒA‚ÉL‚ˆø—p‚³‚êAŽq‹Ÿ‚ÌŒg‘Ñ“d˜bŽg—p‚ð§ŒÀ‚·‚ׂ«‚Æ‚¢‚¤Žå’£‚Ì——R‚̈ê‚‚ɂà‚È‚Á‚Ä‚¢‚éB
RESULTS: Main results are
summarized in the table (SAR in W/kg).
Œ‹‰ÊFŽå‚ÈŒ‹‰Ê‚ðˆÈ‰º‚É‚Ü‚Æ‚ß‚ÄŽ¦‚·ASAR‚ÍW/kg
|
Adult |
10-year old |
5-year old |
Peak SAR in a voxel |
7.66 |
9.78 |
7.97 |
1-g peak SAR in head |
3.81 |
3.93 |
3.43 |
Penetration depth (cm) |
4.58 |
5.14 |
4.77 |
CONCLUSIONS: Œ‹˜_
There are small differences in the peak
1-g SARs (used for compliance limit) or depths of penetration for the three
exposed heads.
3ƒ‚ƒfƒ‹ŠÔ‚Ƀs[ƒN1gSAR‚ÆZ“§[‚³‚ɂ킸‚©‚È·ˆÙ‚Í‚ ‚éB
From these results, we conclude that the 1-g peak SAR and penetration depth in
head models exposed to 835MHz cell phones do not significantly differ in adult
and child heads.
‚±‚ê‚ç‚ÌŒ‹‰Ê‚©‚çA“ª•”ƒ‚ƒfƒ‹‚É835MHz‚ÌŒg‘Ñ“d˜b‚Ì“d”g‚É”˜˜I‚µ‚½ŽžA1gSAR‚ÆZ“§[‚³‚ÉA¬l‚ÆŽq‹Ÿ‚ÌŠÔ‚É—LˆÓ‚È·ˆÙ‚Í‚È‚¢‚ÆAŒ‹˜_•t‚¯‚½B
‚»‚Ì5j
17-4: SLEEPING DISORDERS AND DEPRESSIVE SYMPTOMS IN WOMEN LIVING NEAR A 735KV LINE.
735kV‘—“dü‚Ì‹ß–T‚ÉZ‚Þ—«‚̇–°áŠQ‚Æ‚¤‚•a
P. Levallois, M. Dumont, R. Boyer, D. Gauvin, S. Gingras.
Unité de recherche en santé@publique, Centre Hospitalier Universitaire de
Québec, Beauport, (Québec) Canada
Recently, we found that aged and overweight women living near high power lines
had lower sulfa-toxy-melatonin excretion (Levallois et al 2001).
The objective of this study was to compare symptoms of insomnia and depression
in women living near and far away from a high powerlineD
Å‹ßA‰äX‚Í‚ˆ³‘—“dü‚Ì‹ß‚‚ÉZ‚Þ˜V—î‚ʼnߑÌd‚Ì—«‚̃Tƒ‹ƒtƒ@ƒgƒLƒVƒƒ‰ƒgƒjƒ“iBEMSJ’F”A’†‚É”ro‚³‚ê‚郃‰ƒgƒjƒ“‚Ì‘ãŽÓ•¨j‚Ì”rŸ•‚ª‚È‚¢‚±‚Æ‚ðŒ©o‚µ‚½i2001”N‚Ì•MŽÒ‚ç‚ÌŒ¤‹†jB
–{Œ¤‹†‚Ì–Ú“I‚ÍA‚ˆ³‘—“dü‚©‚ç—£‚ꂽŠ‚Æ‹ß‚¢Š‚ÉZ‚Þ—«‚Ì•s–°Ç‚Æ‚¤‚•a‚Ì”äŠr‚ð‚¨‚±‚È‚Á‚½B
METHODS: •û–@
In the Québec city area, 221 living within 200 meters of a 735kV line and 195
women living at least 400 meters from any power lines were recruited.
ƒPƒxƒbƒNŽs“à‚ÅA735‚‹V‘—“dü‚Ì200mˆÈ“à‚ÉZ‚Þ221–¼‚ÆA‘—“dü‚©‚ç400mˆÈã—£‚ê‚ÄZ‚Þ—«400–¼‚ðW‚ß‚½B
Participants, aged between 20 and 74, were required to wear an EMDEX Lite meter
for 36 hours to measure personal exposure to extremely low frequency magnetic
field and residential exposure to extremely low frequency electric field was
assessed by spot measurements.
‹¦—ÍŽÒ‚Í”N—î20΂©‚ç74ÎA’áŽü”gŽ¥ŠE‚Ö‚ÌŒÂl”˜˜I‚𑪒肷‚邽‚ß‚ÉA˜‚ÉEMDEXƒ‰ƒCƒg‚Æ‚¢‚¤Ž¥ŠE‘ª’èŠí‚ðŽæ‚è•t‚¯‚é—l‚É—v‹‚³‚ꂽB‚Ü‚½AZŠÂ‹«‰º‚É‚¨‚¯‚é’áŽü”g“dŠE‹“x‚̓Xƒ|ƒbƒg‘ª’è‚Å•]‰¿‚µ‚½B
RESULTS: Œ‹‰Ê
Magnetic field exposure over 24 hours was three times higher for women living
near a power line than women living farther away (p<0.001) and residential
electric field intensity was nearly twice in those living near the line
(p<0.001).
24ŽžŠÔˆÈã‚ÌŽ¥ŠE”˜˜I—Ê‚Í‘—“dü‚Ì‹ß‚‚ÉZ‚Þl‚ÍA‰“‚‚ÉZ‚Þl‚Ì3”{‚Å‚ ‚Á‚½B‚»‚µ‚ÄAZŠÂ‹«‰º‚Ì“dŠE‹“x‚ÍA‘—“dü‚Ì‹ß‚‚Él‚Í–ñ2”{‚Ì‹‚³‚Å‚ ‚Á‚½B
Sleeping disorders and particularly, <wake up feeling tired> was more frequent
in the last month for those living near the line (OR=2.25, 95%CI:1.19-4.28) but
no dose-response relationship was found with magnetic or electric intensity.
‡–°áŠQ‚Æ“Á‚Éu‹N°Žž‚É‚¾‚é‚¢Š´‚¶v‚ªA‘—“dü‹ß–T‚ÉZ‚Þl‚ł͉ߋŽ1‚©ŒŽŠÔ‚Ì•p“x‚ª‘½‚©‚Á‚½B
‚µ‚©‚µAŽ¥ŠE‚Æ“dŠE‹“x‚Æu—Ê|”½‰žŠÖŒWv‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B
This result was not explained by other variables taken into account.
‚±‚ÌŒ‹‰Ê‚ÍAl—¶‚É“ü‚ꂽ—lX‚È•Ï”i—v‘fj‚Å‚Íà–¾‚ª‚‚©‚È‚¢B
CONCLUSIONS: No effect on depressive symptoms was found in association with
exposure to electric@and magnetic fields.
Œ‹˜_F•s–°Ç‚Æ“dŠEEŽ¥ŠE‚Ö‚Ì”˜˜I‚Æ‚ÌŠÖ˜A‚ðŽ¦‚·Œø‰Ê‚ÍŒ©‚‚©‚ç‚È‚©‚Á‚½B
‚»‚Ì‚Uj
ƒ^ƒCƒgƒ‹FP-37F10mW/cm2 LEVEL OF EMF
IN STANDARDS OF RUSSIA AND 1000mW/cm2 LEVEL IN ICNIRP'S RECOMMENDATIONS
(experimental studies for the characterising of these
differences).
ƒƒVƒA‚Ì“dŽ¥ŠE‹K’è‚Ì10mW/cm2‚ÆICNIRP„§‚Ì1000mW/cm2 i‚±‚ê‚ç‚Ì·ˆÙ‚̈Ӗ¡•t‚¯‚ÉŠÖ‚·‚éŽÀŒ±“I‚ÈŒ¤‹†j
Œ¤‹†ŽÒGYu. Grigoriev, V.S. Stepanov,
L.A. Tomashevskaya, A.V. Shafirkin,
A.L. Vasin.
State Research Center-Institute of Biophysics, Moscow, Russia.
OBJECTIVES and METHODS: –Ú“I‚Æ•û–@
Presented results of two groups of base studies were used for standards establishing
in the USSR.
ˆÈ‰º‚ÉŽ¦‚·2ŒQ‚ÌŠî‘bŒ¤‹†‚ÍAUSSR‚É‚¨‚¯‚éŠî€ô’è‚ÉŽg‚í‚ꂽ‚à‚Ì‚Å‚ ‚éB
The first group: five experiments with chronic exposure of EMF 850-1750 MHz in
anechoic chamber with the frequency modulation of 400 Hz and with continues
wave (CW) were held.
‘æ1ŒQ‚É5‚‚̌¤‹†‚ÍA“d”gˆÃŽº‚Å850-1750MHz‚Ì“dŽ¥ŠE‚ðA400Hz‚ÅŽü”g”•Ï’²‚ƘA‘±”g‚ð—p‚¢‚½–«”˜˜I‚Ås‚Á‚½B
Power density was 10, 20, 50, 100, 140 and 500mW/cm2.
“d—Í–§“x‚Í10A20A50A100A140A500‚W/cm2‚Å‚ ‚éB
Time of exposure was 6, 12 and 16 hours in a day during 4 months.
”˜˜IŽžŠÔ‚ÍA1“ú6A12A16ŽžŠÔ‚ÅA4ƒJŒŽŠÔs‚Á‚½B
1150 rats were used in the experiment.
1150•C‚̃‰ƒbƒg‚ªŽÀŒ±‚ÉŽg—p‚³‚ꂽB
Physiological, biochemical, immunological methods were applied in the experiments;
generative function was evaluated.
¶—Šw“IA¶‰»Šw“IA–ƉuŠw“I‚ÈŽè–@‚ªÌ—p‚³‚êA¶B‹@”\‚ª•]‰¿‚³‚ꂽB
The second group: eleven experiments with chronic exposure of EMF 2375 - 2750
MHz in anechoic chamber with the modulation frequency of 400 Hz and with CW
were held.
‘æ2‚ÌŒ¤‹†ƒOƒ‹[ƒvF“d”gˆÃŽº‚ÅA˜A‘±”g‚Æ‚S‚O‚OHzU••Ï’²‚³‚ꂽ2375-2750MH‚š‚Ì“dŽ¥ŠE‚Ö‚Ì’·Šú”˜˜I‚ÉŠÖ‚·‚é11‚ÌŽÀŒ±‚ªs‚í‚ꂽB
Power density was 1, 10, 50, 100, 500, 1000 and 2500mW/cm2.
“d—Í–§“x‚Í1, 10, 50, 100, 500, 1000‚Æ2500mW/cm2‚Å‚ ‚éB
Time of exposure was 6 -16 hours in a day during 1-4 months.
”˜˜IŽžŠÔ‚ÍA1-4ƒJŒŽ‚ɂ킽‚Á‚ÄA1“ú‚É6-16ŽžŠÔ‚Å‚ ‚éB
Exposure has continued from 1 to 45 days for the evaluation of possible
cumulative effects.
”˜˜I‚ÍA’~Ï‚³‚ê‚Ä‚¢‚‰e‹¿‚ª‚ ‚é‰Â”\«‚àŠm”F‚·‚邽‚ß‚ÉA1‚©‚ç45“úŠÔ‚̘A‘±”˜˜I‚Å‚ ‚éB
The series of experiments was conducted to investigate EMF influence in rats' foetus development which were exposed during the whole
period of pregnancy (from 1 to 19 days).
‘S”DPŠúŠÔ’†i‚P‚©‚ç19“ú–Új‚É“dŽ¥”g”˜˜I‚µ‚½ƒ‰ƒbƒg‚Ì‘ÙŽ™‚Ì”ˆç‚É‚¨‚¯‚é“dŽ¥”g‚̉e‹¿‚𒲂ׂ邽‚ß‚É•¡”‚ÌŽÀŒ±‚ªs‚í‚ꂽB
’FFoetus;‘ÙŽ™ (”DP‚WTŠÔŒã‚©‚çoŽY‚Ü‚Å
2170 rats were used in experiments.
2170•C‚̃‰ƒbƒg‚ª—p‚¢‚ç‚ꂽB
Methods used were the same as in the first group.
ŽÀŒ±•û–@‚ÍA‘æ1ŽÀŒ±ƒOƒ‹[ƒv‚Æ“¯‚¶‚Å‚ ‚éB
Cytology results and data of progeny study were presented.
×–EŠw“I‚ÈŒ‹‰Ê‚ÆA”DPŒ¤‹†‚̃f[ƒ^‚ðŽ¦‚·B
BEMSJ’GƒƒVƒA‚ÌŒµ‚µ‚¢‹K’è‚̘_‹’‚ª–¾‚ç‚©‚É‚È‚Á‚½‚ªA‚±‚Ì—\e‚É‚ÍŠÌS‚ÌŒ¤‹†Œ‹‰Ê‚ªŽ¦‚³‚ê‚Ä‚¢‚È‚¢‚µAˆø—pEЉ‚ê‚Ä‚¢‚éUSSRŽž‘ã‚ÌŒ¤‹†˜_•¶–¼‚È‚Ç‚Ìî•ñ‚Í‹LÚ‚³‚ê‚Ä‚¢‚È‚¢B
‚»‚Ì7)
ƒ^ƒCƒgƒ‹FP-59@DECREASED SURVIVAL FOR CHILDHOOD LEUKAEMIA PROXIMITY TO TV TOWERS.
ƒeƒŒƒr•ú‘—“ƒ‚É‹ßÚ‚µ‚½¬Ž™”’ŒŒ•aŠ³ŽÒ‚ÌŽ€–S—¦‚̒ቺ
Œ¤‹†ŽÒFB. Hocking, I. Gordon.
Camberwell, Vic, Australia 3124. 2Statistical Consulting Centre, University of
Melbourne Parkville Vic Australia 3052.
OBJECTIVE: In a previous study we
reported an increased risk of childhood leukemia in municipalities proximate to
TV towers in north Sydney compared with more distant
ones (Hocking B, Gordon I, Hatfield G, Grain H, Cancer incidence and proximity
to TV towers Med J Aust 1996; 165: 601-605).
‰äX‚͈ȑO‚ÉA–kƒVƒhƒj[’n‹æ‚̃eƒŒƒr‘—M“ƒ‚É‹ßÚ‚·‚é’¬‚ÍA‚æ‚è—£‚ꂽ’¬‚É”ä‚ׂÄA¬Ž™”’ŒŒ•a‚̃ŠƒXƒN‚ª‘‰Á‚·‚é‚ÆA•ñ‚µ‚½i1996”N‚̘_•¶jB
The rate ratio for incidence, comparing the inner ring of municipalities to the
outer ring, was 1.55 (95% confidence interval 1.00 – 2.41) and for mortality
the rate ratio was 2.74 (95% confidence interval 1.42 – 5.27).
•ú‘—“ƒ‚ð’†S‚Æ‚µ‚Ä“à‘¤‚É‚ ‚é’¬‚Å‚ÍAŠOŽü‚É‚ ‚é’¬‚É”ä‚ׂÄAœëŠ³—¦”ä‚Í1.55i95%M—Š‹æŠÔ7F1.00-2.41j‚Å‚ ‚èAŽ€–S—¦”ä‚Í2.74i95%M—Š‹æŠÔF1.42-5.27j‚Å‚ ‚Á‚½B
The objective of the current study was to analyze the survival experience of
the cases in detail, to determine whether there are differences between the two
populations
–{Œ¤‹†‚Ì–Ú“I‚ÍAÇ—á‚̶‘¶—¦‚ðÚׂɉðÍ‚µA“ñ‚‚ÌW’cŠÔ‚É·ˆÙ‚ª‚ ‚é‚©‚ðŒ©‹É‚ß‚é‚±‚Æ‚É‚ ‚éB
METHODS: •û–@
Survival data on cases diagnosed from 1972-93 were analyzed.
1972”N‚©‚ç1993”NŠÔ‚Éf’f‚³‚ꂽǗá‚̶‘¶—¦‚ð‰ðÍ‚µ‚½B
Data on all cases who survived for less than one month were verified by the NSW
cancer registry and one case diagnosed at autopsy excluded. Data were described
by Kaplan-Meier curves.
‚È‚‚Æ‚à1‚©ŒŽˆÈã‚̶‘¶ŠúŠÔ‚Å‚ ‚Á‚½‚·‚ׂĂÌÇ—á‚ðNSWB‚̃Kƒ““o˜^ƒf[ƒ^‚ÅŠm”F‚µ‚½B
ƒf[ƒ^‚ÍKaplan-Meier‹Èü‚ÅŽ¦‚³‚ꂽB
RESULTS:
There were 123 diagnosed cases of acute lymphatic leukemia (ICD-9 204.0) of
which 29 (16 deaths) were in the inner ring of municipalities and 94 (34
deaths) were in the outer ring.
‹}«”’ŒŒ•a‚Æf’f‚³‚ꂽ123‚ÌÇ—á‚ÍA“àŽü•”‚ÉZ‚ÞÇ—á‚Í29iŽ€–S16j‚ÅAŠOŽü•”‚ÉZ‚ÞÇ—á‚Í94iŽ€–S34j‚Å‚ ‚Á‚½B
We found a significant difference in survival (log rank: P = 0.03; Wilcoxon: P
= 0.05).
¶‘¶—¦‚É—LˆÓ‚È·ˆÙ‚ª‚ ‚邱‚Æ‚É‹C‚¢‚½B
The 5-year survival in the inner ring of municipalities was 55% and in the
outer ring 71% (inner 23% worse); at 10 years the survival was 33% and 62%
respectively (inner 47% worse).
5”N¶‘¶—¦‚Í“àŽü•”‚Å55%AŠOŽü•”‚Å71“i“àŽü•”23%—ò‰»jA10”N¶‘¶—¦‚Í“àŽü•”33%AŠOŽü•”62%i“àŽü•”‚Í47%—ò‰»j‚Å‚ ‚éB
After adjustment for the potential confounders using Coxfs model, the mortality
rate ratio comparing the inner ring with the outer ring was found to be 2.1
(95% confidence interval: 1.1 – 4.0).
Coxƒ‚ƒfƒ‹‚ð—p‚¢‚½Œð—ˆöŽq‚ð’²®Œã‚ÌŠOŽü•”‚É”ä‚ׂ½“àŽü•”‚ÌŽ€–S—¦”ä‚Í2.1i95“M—Š‹æŠÔF1.1-4.0j‚Æ‚È‚Á‚½B
We were not able to control for cytogenetic abnormalities.
‰äX‚ÍA¶—Šw“I‚ȈÙí‚ð”rœ‚Å‚«‚È‚¢B
CONCLUSION: Œ‹˜_
There was an association between proximity to the TV towers and decreased
survival, among cases of childhood leukemia.
¬Ž™”’ŒŒ•a‚ÉŠÖ‚µ‚ÄAƒeƒŒƒr•ú‘—“ƒ‚É‹ßÚ‚µ‚½¶Šˆ‚ƶ‘¶—¦‚̒ቺ‚ÍŠÖ˜A‚µ‚Ä‚¢‚é‚ÆŒ¾‚¦‚éB
‹LF‚Q‚O‚P‚Q|‚P‚P|‚P‚V
ˆÈ‰º‚Ì”NŽŸ‘‰ï‚ªŠJ³‚ꂽB
–––––––––––––––––––––
The Bio electromagnetics Society@34th Annual Meeting
June 17, 2012 - June 22, 2012
Brisbane Convention and Exhibition Centre@Brisbane, Australia
–––––––––––––––––––––––––––––––––––––
—\eW‚©‚çAŠÖS‚Ì[‚¢Œ¤‹†•ñ‚ðˆÈ‰º‚É”²ˆ‚µ‚ÄAЉ‚éB
––––––––––––––––––––––––––––––––
1. Session O1: Epidemiology
Mobile Phone Use and
Incidence of Glioma in the Nordic Countries 1979–2008: Do incidence rates
corroborate case-control studies?
–k‰¢Še‘‚Ì1979|2008”N‚É‚¨‚¯‚é_ŒoäPŽî‚Ì”¶‚ÆŒg‘Ñ“d˜b‚ÌŽg—pF”¶—¦‚ÍÇ—á‘ÎÆŒ¤‹†‚ÌØ‹’‚È‚Ç‚É‚æ‚Á‚ÄŠm’肳‚ê‚é‚©H
Isabelle Deltour1, 2, Anssi Auvinen3, Maria Feychting4, Christoffer Johansen5, Lars Klæboe6, Risto Sankila7
& Joachim Schuz1
1Fsection
of Environment and Radiation, International Agency for Research on Cancer,
Lyon, France, 69008
We analyzed annual age-standardized incidence rates in men and women aged 20 to
79 years during 1979–2008 in Nordic countries (35,250 glioma cases).
Probabilities of detecting various levels of relative risk were computed using
simulations.
No clear trend change in glioma incidence rates was observed.
Several of the risk increases seen in case-control studies appear to be
incompatible with the observed lack of incidence rate increase in middle-aged
men, pointing to biases and errors.
ƒmƒ‹ƒfƒBƒbƒNŠe‘‚Ì35250—á‚Ì_ŒoäPŽî‚ð‘ÎÛ‚ÉA1979”N‚©‚ç2008”N‚É‚©‚¯‚ÄA20΂©‚ç79Ë‚Ü‚Å‚Ì’j—‚É‚¨‚¯‚é”NŠÔ‚Ì”N—î•Ê•W€‰»”¶—¦‚ð‰ðÍ‚µ‚½B
‘Š‘Ί댯“x‚Ì—lX‚ȃŒƒxƒ‹‚ÌŒŸo‚̉”\«‚ðAƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ð—p‚¢‚ÄŒvŽZ‚µ‚½B
Œ‹‰Ê‚Æ‚µ‚Ä–¾Šm‚È_ŒoäPŽî‚̕ω»ŒXŒü‚Í‚Ý‚ç‚ê‚È‚©‚Á‚½B
Ç—á‘ÎÆŒ¤‹†‚ÅŒ©‚ç‚ꂽŠô‘½‚̃ŠƒXƒN‚ÍA’†”N‘w‚Ì’j«‚Ì”¶—¦‘‰Á‚ª‚Ý‚ç‚ê‚È‚©‚Á‚½‚±‚Æ‚©‚çAŠÏŽ@‚³‚ꂽŒ‹‰Ê‚Æ•sˆê’v‚ÅAƒoƒCƒAƒX‚âŒë·‚ÆŒ¾‚¦‚éB
Figure 1F_ŒoäPŽî‚Ì”¶—¦‚Ì”N•Ê„ˆÚA–k‰¢Še‘@1979”N‚©‚ç2008”N‚Ü‚Å‚ÌŠÏŽ@’l
BEMSJ’F
ƒCƒ“ƒ^[ƒtƒHƒ“Œ¤‹†‚Å‚ÌÇ—á‘ÎÆŒ¤‹†‚Æ‘ŠŠÖ‚ªŽæ‚ê‚È‚¢B
ƒXƒEƒF[ƒfƒ“‚ÅŒg‘Ñ“d˜b‚ÌŽg—pŠJŽn‚Í1987”NA2008”N‚Ü‚Å‚Ì’ÇÕ’²¸‚Å‚ ‚é‚Ì‚ÅA”‚ª‚ñ‚Ü‚Å10”N‚©‚©‚é‚Æ‚µ‚Ä‚àA‚à‚µˆö‰ÊŠÖŒW‚ª‚ ‚ê‚ÎA‚ª‚ñ‚Ì”¶—¦‚Í㸂̌XŒü‚ðŽ¦‚µ‚Ä‚à‚æ‚¢‚Í‚¸‚Å‚ ‚邪AŽÀ‘Ô‚Ì”‚ª‚ñ”¶—¦‚Æ‚Í‘ŠŠÖ‚µ‚Ä‚¢‚È‚¢B
–––––––––––––––––––––––––––––––––––––––
2. Session O1|2@Epidemiology
Use of mobile phones and
risk of brain tumours: update of Danish cohort study@
Œg‘Ñ“d˜b‚ÌŽg—p‚Æ”]Žîᇂ̃ŠƒXƒNFƒfƒ“ƒ}[ƒN‚̃Rƒz[ƒgŒ¤‹†‚ÌÅVî•ñ
Aslak Poulsen1, Patrizia Frei1,
2, 3, 4, Christoffer Johansen1, Jørgen Olsen1, Marianne Steding-Jessen1 & Joachim Schuz1
1FDanish
Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark,
2100
We investigated the risk of brain tumors among all Danish mobile phone
subscribers before 1996, followed up for brain tumors until end of 2007.
The 358 403 subscription holders accrued 3.8 million person years.
Neither overall nor when restricting to subjects with 13 or more years since
first subscription did we see an increased risk of brain tumors.
This large nationwide cohort study provides little evidence for a causal
association between mobile phone use and brain tumors.
1996”NˆÈ‘O‚Ƀfƒ“ƒ}[ƒN‘S“y‚ÌŒg‘Ñ“d˜b—˜—p“o˜^ŽÒ‚Ì”]ŽîᇃŠƒXƒN‚ðŒ¤‹†‚µ‚½B
2007”N––‚Ü‚Å‚Ì’ÇÕ’²¸‚ðs‚Á‚½B
358403–¼‚Ì—˜—pŽÒ‚ÅA3.8–œl”N‚ÌŒ¤‹†‹K–Í‚Æ‚È‚Á‚½B
‘S‘Ì‚Æ‚µ‚Ä‚àA‚Ü‚½Å‰‚Ì“o˜^‚©‚ç13”NˆÈã‚Ì“o˜^ŽÒŠÔ‚É‚àA”]Žîᇂ̃ŠƒXƒN‘‰Á‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B
‚±‚̃fƒ“ƒ}[ƒN‘S“y‚ð‘ÎÛ‚Æ‚µ‚½‘å‹K–Í‚ÈŒ¤‹†‚ÍAŒg‘Ñ“d˜b‚ÉŽg—p‚Æ”]Žîᇂ̈ö‰ÊŠÖŒW‚ðŠm—§‚·‚éŠmØ‚É‚Í‚È‚ç‚È‚¢B
–––––––––––––––––––––––––––––––––––––––
3. Session O3: In-vitro
DNA MICROARRAY ANALYSIS
OF KERATINOCYTE@GENE EXPRESSION AFTER EXPOSURE
TO 60-GHZ MILLIMETER WAVES UNDER NEAR-FIELD CONDITION@
DNAƒ}ƒCƒNƒƒAƒŒƒC‰ðÍ‚É‚æ‚é‹ß–TŠE‚Æ‚µ‚Ä‚Ì60GHz“dŽ¥ŠE”˜˜IŒã‚ÌŠpŽ¿×–Eˆâ“`Žq”Œ»
Denis Habauzit1, Catherine Le Quément1, Maxim Zhadobov2, Ronan Sauleau2, Denis Michel1
& Yves Le Dréan1
1FTranscription,
Environment and Cancer group, University of Rennes 1, Rennes, France, 35042
We have investigated whether human skin cells respond to high-power
millimeter-waves (MMW) radiations under near-field condition.
Human skin cells were exposed 3 hours at 60.4 GHz with an average incident
power density of 20mW/cm².
Using DNA microarray analysis we found 37 genes differentially expressed
between the MMW exposure condition and the sham heat shock control.
These results suggest that MMW could significantly impact gene expression of
cells submitted to a heat stress.
‹ß–TŠEðŒ‰º‚Å‚Ì‚o—̓~ƒŠ‚Í“dŽ¥”g‚É‚æ‚éƒqƒg‚̔畆זE‚̉ž“š‚𒲂ׂ½B
60.4GHz‚Ì“dŽ¥”gi•½‹ÏÆŽË“d—Í–§“x‚ð20mW/cm2j‚ð3ŽžŠÔ”˜˜I‚µ‚½B
ƒ~ƒŠ”g”˜˜IE‹^Ž—”˜˜IE”MƒVƒ‡ƒbƒN‚É‚æ‚é‘ÎÆŒQ‚ÌŠÔ‚ÅA37‚̈â“`Žq”Œ»‚É·ˆÙ‚ª‚Ý‚ç‚ꂽB
‚±‚ê‚̓~ƒŠ”g‚ª”畆זE‚É”MƒXƒgƒŒƒX‚ð—^‚¦Aˆâ“`Žq”Œ»‚ɉe‹¿‚ð—^‚¦‚Ä‚¢‚éB
Long Abstract
Primary human skin cells were exposed 3
hours at 60.4 GHz with an average incident power density of 20mW/cm².
The average and peak SAR over the cell monolayer were 594 W/kg and 1233 W/kg,
respectively.
”畆זE‚É60.4GHz‚Ì“dŽ¥”g‚ð3ŽžŠÔ”˜˜I‚µ‚½A•½‹ÏÆŽË“d—Í–§“x‚Í20mW/cm2B
×–E‚Ì1‘w‚Ö‚Ì•½‹ÏSAR‚Í594W/kgAƒs[ƒNSAR‚Í1233W/kg‚Å‚ ‚éB
In this case, the exposure induces a significant increase of the culture medium
temperature (from 35‹C to 43‹C).
‚±‚Ìê‡A”˜˜I‚É‚æ‚Á‚Ä×–E”|—{‰t‚̉·“x‚Í35“x‚©‚ç43“x‚Ü‚Å㸂µ‚Ä‚¢‚éB
Our results demonstrate that MMW radiation does not induce any significant
modification in gene expression when the physiological cell temperature is
artificially maintained at 35‹C.
×–E‚̉·“x‚ð35“x‚ÉlH“I‚Ɉê’è‚É‚µ‚½ê‡Aƒ~ƒŠ”g”˜˜I‚Å—LˆÓ‚Ȉâ“`Žq”Œ»‚̕ω»‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B
Nevertheless, comparing MMW-induced increase of cells temperature, with
heat-shocked sham (both at 43‹C), 37 genes are detected as differentially
expressed with a fold change above 2.
These results seem to evidence that MMW could impact gene expression when cells
are under a heat stress.
ˆê•û‚ÅA”MƒVƒ‡ƒbƒN‚Æ‚µ‚Ä43“x‚Ü‚Åã‚°‚½ê‡A37‚̈â“`Žq”Œ»‚É2”{ˆÈã‚̕ω»‚ªŒ©‚ç‚ꂽB
‚±‚Ì‚±‚Æ‚©‚çƒ~ƒŠ”g”˜˜I‚͔畆‚Ì”MƒXƒgƒŒƒX‰º‚ÅAˆâ“`Žq”Œ»‚ɕω»‚ª‹N‚±‚é‚Æ‚¢‚¦‚éB
BEMSJ’F
‰·“x‚ª8“x‚à㸂·‚éðŒ‚ł͈â“`Žq”Œ»‚ɕω»‚ªŒ»‚ê‚éB
‰·“x‚ðã‚°‚È‚¢‚悤‚É—â‹p‚µ‚Ä“dŽ¥”g‚É”˜˜I‚µ‚½ê‡‚ÍAˆâ“`Žq”Œ»‚ɕω»‚Í‚È‚¢B
‚æ‚Á‚ÄAˆâ“`Žq”Œ»‚Í”M“I‚Èì—p‚ÆŒ¾‚¦‚éB
‰·“x‚¾‚¯‚ðã‚°‚ÄA“¯‚¶‰·“x㸂ɂµ‚½ê‡‚Í‘S‚“¯‚¶‚Å‚Í‚È‚¢‚Ì‚ÅA‰·“x‚ªã‚ª‚邾‚¯‘å‚«‚È”˜˜I‚ª‚ ‚ê‚ÎA“dŽ¥”g‚̉e‹¿‚ªŒ»‚ê‚é‚Æ‚¢‚¦‚éB
–––––––––––––––––––––––––––––––––––
4. Session PA:
Poster Session A
Comparison of Specific
Absorption Rate (SAR) Induced In Brain Tissues of Child and Adult Using Mobile
Phone
Œg‘Ñ“d˜b‚ÌŽg—p‚É‚æ‚é‘ål‚ÆŽq‹Ÿ‚Ì”]“à‘gD‚É—U“±‚³‚ê‚éSAR‚Ì”äŠr
Mai Lu1 & Shoogo Ueno2
1FKey
Lab. of Opt-Electronic Technology and Intelligent
Control of Ministry of Education, Lanzhou Jiaotong
University, Lanzhou, China, 730070
In this study, two children and one adult head models have been employed to
calculate the specific absorption rate (SAR) in brain tissues by
finite-difference time-domain method.
It was found that there is a deeper penetration of absorbed SAR in child head.
The induced SAR can be significantly higher in subregions of child brain.
‚±‚ÌŒ¤‹†‚Å‚ÍA1‚‚̑ål‚Ì“ª•”‚ÆA“ñ‚‚̎q‹Ÿ‚Ì“ª•”‚ð—p‚¢‚ÄA”]“à‘gD‚É—U“±‚³‚ê‚éSAR‚ðFDTD–@‚ʼnðÍ‚µ‚½B
Žq‹Ÿ‚Ì”]‚Å‚Í‹zŽû‚³‚ê‚éSAR‚Í”][•”‚É’B‚µ‚Ä‚¢‚邱‚Æ‚ª”»‚Á‚½B
—U“±‚³‚ê‚éSAR‚ÍŽq‹Ÿ‚Ì”]‚Ì‹ÇŠ‚É‚¨‚¢‚Ä‘å‚«‚‚È‚Á‚Ä‚¢‚éB
Long Abstract‚©‚çˆê•”ˆø—p
A generic handset (known as IEEE mobile phone) was modeled in this study.
The length of the monopole antenna is 38 cm at 1750 MHz.
The antenna is mounted on a conductive box with lateral dimensions 40 mm ~ 100 mm, and
thickness 20 mm.
IEEEŒg‘Ñ“d˜b‚Æ‚µ‚Ä’m‚ç‚ê‚Ä‚¢‚éŒg‘Ñ’[––‚ð—p‚¢‚½B
ƒ‚ƒmƒ|[ƒ‹ƒAƒ“ƒeƒi‚Í1750MHz‚Å’·‚³‚Í38cmB40X100mm‚Å[‚³20mm‚Ì“±“d«‚Ì” ‚ÉŽæ‚è•t‚¯‚½B
ƒ‚a‚d‚l‚r‚i’F38cm‚̃‚ƒmƒ|[ƒ‹‚Æ‚ ‚邪A”g’·‚©‚çl‚¦‚Ä3.8cm‚̊ԈႢ‚Å‚ ‚낤B‚Ç‚Ì’ö“x‚Ì“d—Í‚Æ‚µ‚½‚Ì‚©‹Lq‚Í‚È‚¢B„
SAR10g in child brains are higher than the corresponding values in adult brain.
However in both child and adult brains, SAR10g is well below 2 W/kg, the safety
level defined in IEEE standard.
‘ål‚ÌꇂÌSAR‚É”ä‚ׂÄAŽq‹Ÿ‚Ì10g‚ ‚½‚è‚ÌSAR‚Í‘å‚«‚¢B
‚µ‚©‚µAIEEE‚Ì‹K’è‚É‚ ‚éˆÀ‘SŠî€10g‚ ‚½‚è‚ÌSAR@2W/kg‚É”ä‚ׂé‚Æ\•ª‚É’á‚¢B
Figure 1F“ª•”ƒ‚ƒfƒ‹@
(a) 6Ë’jŽ™
(b) 11Ë—Žq
(c) 34Ë’j«
Figure 2FSAR‚Ì•ª•z‚̈Ⴂ@(a)
6Ë’jŽ™
(b) 11Ë—Žq
(c) 34Ë’j«
Table 2FSAR10g (W/kg) ‚Ì”äŠr@
–––––––––––––––––––––––––––––––––
5. Session PA: Poster Session A @‚o‚`‚Q‚X@
Recall Accuracy of
Laterality of Mobile Phone Call: A Validation Study Using Software Modified
Phone in Japan
Œg‘Ñ“d˜b‚ŒʘbŽž‚É‚Ç‚¿‚ç‚ÌŽ¨‚ÅŽg—p‚·‚é‚©AŽv‚¤o‚µ‚̳Šm«F“ú–{‚É‚¨‚¯‚éƒ\ƒtƒgƒEƒGƒA‚ʼnü—Ç‚µ‚½“d˜b‚ð—p‚¢‚½Šm”FŒ¤‹†
Kosuke Kiyohara1, Kanako Wake2, Soichi Watanabe2, Takuji Arima2,
3, Daisuke Furushima1, Yasuto Sato1, Noriko Kojimahara1, Masao Taki2,
4 & Naohito Yamaguchi1
1FTokyo
Womenfs Medical University, Japan
We evaluated the accuracy of self-reported laterality of mobile phone calls,
using Software Modified Phones (SMPs) which can log the use of right or left
ear during a call.
100 mobile phone users aged 18-24 were required to use a SMP for one month.
Subsequently, a questionnaire survey was conducted.
The agreement between SMP record and self-reported laterality was fair for both
outgoing (ƒÈ=0.4) and incoming (ƒÈ=0.4) calls.
The results of the epidemiological studies based on self-reported mobile phone
use should be carefully interpreted.
ƒ\ƒtƒgƒEƒGƒA‚ð‰ü—Ç‚µ‚½“d˜b‹@‚ð—p‚¢‚ÄAŒg‘Ñ“d˜bŽg—pŽž‚É‚Ç‚¿‚ç‚ÌŽ¨‚Åi“ª•”‚Ì‚Ç‚¿‚ç‚Ì‘¤–Ê‚ÅjŽg—p‚µ‚½‚©‚ÉŠÖ‚·‚鎩ŒÈ\‚̳Šm«‚𒲸‚µ‚½B
Œg‘Ñ“d˜b‚ð‰E‘¤‚ÅŽg‚¤‚©¶‘¤‚ÅŽg‚¤‚©‚ð‹L˜^‚Å‚«‚éŒg‘Ñ“d˜b‚ðŽg—p‚µ‚ÄA18΂©‚ç24΂Ì100–¼‚É1‚©ŒŽŠÔ‚Ì‚±‚Ì“d˜b‚ðŽg‚Á‚Ä‚à‚ç‚Á‚ÄA—˜—p󋵂𒲂ׂ½B
Ž©ŒÈ\‚Å‚Ç‚¿‚ç‚©‚ÅŽg—p‚µ‚Ä‚¢‚é‚©‚Ìî•ñ‚𓾂½B
Œ‹‰Ê‚ÍA‰ü—Ç“d˜b‚É‹L˜^‚³‚ꂽŽÀÛ‚ÌŽg—p‘¤–Ê‚ÆA•ñ‚³‚ꂽŽg—p‘¤–Ê‚Æ‚ÌŠÖŒW‚ÍA“d˜b‚ÌŽóMŽž‚Å‚àA‘—MŽž‚Å‚àA‚Æ‚à‚Ɉê’v“x‚Í‹É‚ß‚Ä’á‚©‚Á‚½i‘ŠŠÖŒW”F0.4jB
–{Œ¤‹†‚Å‚ÍA‰uŠwŒ¤‹†‚É‚¨‚¯‚鎩ŒÈ\‚ɊuŠwŒ¤‹†‚Ì•ñ‚ðA’ˆÓ[‚‰ðŽß‚µ‚È‚¯‚ê‚΂Ȃç‚È‚¢A‚Æ‚¢‚¤Œ‹‰Ê‚É‚È‚Á‚½B
BEMSJ’F‚µ‚½‚ª‚Á‚ÄAŒg‘Ñ“d˜b‚ð¶‰E‚Ç‚¿‚ç‚ÅŽg—p‚µ‚½‚©‚ÆŒ¾‚¤Ž©ŒÈ\ƒf[ƒ^‚ɊuŠwŒ¤‹†‚ÌŒ‹‰Ê‚É‚Í’ˆÓ‚ª•K—v‚Å‚ ‚éB
–––––––––––––––––––––––––––––––––
6. Session PA: Poster Session A @PA33
Exposure Assessment of the
Low Frequency Magnetic Fields Produced by GSM Mobile Phones
GSMŒg‘Ñ“d˜b‚É‚æ‚é’áŽü”gŽ¥ŠE”˜˜I•]‰¿
Carolina Calderon1, Darren Addison1, Terry Mee1, Richard Findlay1
& Myron Maslanyj1
1FPhysical
Dosimetry Department, Health Protection Agency, Chilton, UK, OX110RQ
The ELF magnetic flux density of 47 mobile phones transmitting at 30 dBm in GSM
1800 MHz has been measured as part of the MOBI-KIDS epidemiological study.
Peak resultant magnetic flux density values varied from 21nT to 1178nT (217 Hz
component), and the mean peak resultant magnetic flux density was of 265 }
180nT.
No obvious correlation was observed between the peak resultant magnetic flux
density and specifications of the phone, although grouping phones on the basis
of their magnetic flux density pattern may perhaps be possible.
Žq‹Ÿ‚ÆŒg‘Ñ“d˜b‚̉uŠwŒ¤‹†Mobi-KIDs‚̈êŠÂ‚Æ‚µ‚ÄAGSMŒg‘Ñ“d˜b1800MHzA30dBmiBEMSJ’F1Wjo—Í‚Ì47‘ä‚ÌŒg‘Ñ’[––‚©‚ç‚Ì’áŽü”gŽ¥ŠE‚𑪒肵‚½B
ƒs[ƒNŽ¥ŠE‹“x‚Í217Hz¬•ª‚ÅA21nT‚©‚ç1178nT‚Å‚ ‚èA•½‹Ï’l‚Í265nT‚Å‚ ‚Á‚½B
ƒs[ƒNŽ¥ŠE‹“x‚ÆŒg‘Ñ’[––‚ÌŽd—l’l‚Æ‚ÌŠÔ‚É‚Í–¾”’‚È‘ŠŠÖŠÖŒW‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B
Œg‘Ñ“d˜b‚ð’áŽü”gŽ¥ŠE‹“x‚ŃOƒ‹[ƒv•ª‚¯‚ð‚·‚é‚±‚Æ‚ª‚Å‚«‚»‚¤‚Å‚ ‚éB
–––––––––––––––––––––––––––––––––––––
7. Session PA:
Poster Session A @‚o‚`‚S‚P
Exposure Levels from
Smart-meters in Residential Settings
Z‹ŠÂ‹«‚É‚¨‚¯‚éƒXƒ}[ƒgƒ[ƒ^‚©‚ç‚Ì“dŽ¥ŠE”˜˜I—Ê
Greg Gajda1, Eric Lemay1
& Art Thansandote1
1FConsumer
& Clinical Radiation Protection, Health Canada, Ottawa, ON, Canada, K1A 1C1
Transmission rates and emission levels were measured from electric smart-meters
in Ottawa Canada.
The mean total daily transmission duration was under 1 minute.
Worst–case outdoor power density levels 20 cm from the meters were 25 times
below Canadian general public exposure limits while those indoors were more
than one thousand times below the same limits.
Given the low transmission rates and weak strengths, emissions measured in this
study were found to be a highly unlikely risk to health.
ƒJƒiƒ_‚̃Iƒ^ƒ‚Å“d—̓Xƒ}[ƒgƒ[ƒ^‚©‚ç‚Ì“dŽ¥”g‚Ì”M—¦‚Æ”M“d—͂𑪒肵‚½B
•½‹Ï‚µ‚½1“ú‚ ‚½‚è‚Ì—ÝŒv”MŽžŠÔ‚Í1•ªˆÈ‰º‚Å‚ ‚Á‚½B
ň«‚ÌꇂÅA‰Æ‚ÌŠO‚Å‘ª’肵‚½ƒXƒ}[ƒgƒ[ƒ^‚©‚ç20cm‚Ì‹——£‚Å‚Ì“d—Í–§“x‚̓Jƒiƒ_‚̈ê”ÊŒöO‚Ö‚Ì”˜˜IŠî€‚Ì25•ª‚Ì‚P‚Å‚ ‚Á‚½B
‚»‚µ‚ÄA‰Æ‚Ì’†‚Å‘ª’肵‚½ê‡‚ÍAƒJƒiƒ_‚̈ê”ÊŒöO‚Ö‚Ì”˜˜IŠî€‚Ì100•ª‚Ì‚PˆÈ‰º‚Å‚ ‚Á‚½B
”M‚ÌŠ„‡‚ª’á‚¢‚±‚Æ‚ÆA“d—Í–§“x‚ÍŽã‚¢‚±‚Æ‚©‚çA¡‰ñ‚Ì‘ª’肵‚½”M‚ÍAŒ’NƒŠƒXƒN‚ª‚“x‚Él‚¦‚ç‚ê‚È‚¢‚Æ‚¢‚¤‚±‚Æ‚ª”»‚éB
Figure 2FƒXƒ}[ƒgƒ[ƒ^‚ªƒAƒp[ƒg‚È‚Ç‚ÅW‡‚µ‚ÄŽæ‚è•t‚¯‚ç‚ê‚Ä‚¢‚éꇂÌuŠÔ“I‚È“d—Í–§“xA‹@Ší‚©‚ç30cm‚̈ʒu‚Å‘ª’èB
––––––––––––––––––––––––––––––––
8. Session PA:
Poster Session A @PA47
Prenatal Whole-Body
Exposure to Electromagnetic Field does not Influence Hematopoietic Activity in
Rats
•ê‘Ì‚ª‘Sg“dŽ¥ŠE‚É”˜˜I‚µ‚½Žž‚Ì‘¢ŒŒŒn‚ÌŠˆ«‚ւ̉e‹¿AƒlƒYƒ~‚Å‚ÌŽÀŒ±B
Koji Murono1, Kazuhito Sasaki1, Hironori Yamaguchi1, Hiroharu Yamashita1, Jianqing Wang2, Shoogo Ueno3, Hirokazu Nagawa 1
& Joji Kitayama1
1FSurgical
Oncology, the University of Tokyo, Tokyo, Japan, 113-8655
Pregnant SD rats were exposed to EMF (sham/ whole-body SAR = 0.08 W/Kg) from
gestational day 7 to 20, 20 hours per day, and bone marrow were obtained from
juvenile rats (19 day) and their components were quantitatively
investigated.
The number of hematopoetic stem cells and percentage
of micronucleus in BM as well as blood cell counts in peripheral blood were not
significantly altered by EMF.
Gestational whole-body exposure to EMF did not affect the hematopoiesis of
their off-springs.
”DP‚µ‚½SDŒnƒlƒYƒ~‚É“dŽ¥ŠE”˜˜I‚µ‚½A‹^Ž—”˜˜I‚Æ‘Sg”˜˜I‚ÅSAR‚ª0.08W/kg‚Ìê‡A‰ù‘Ù7“ú–Ú‚©‚ç20“ú–Ú‚Ü‚ÅA1“ú20ŽžŠÔB
19“ú—é‚ÌŽá‚¢ƒ‰ƒbƒgœ‚Ìœ‘‚ðŽæ‚èA’è—Ê“I‚ɉðÍ‚µ‚½B
‘¢ŒŒŒn‚ÌŠî’ê×–E‚Ì”Aœ‘‚É‚¨‚¯‚é”÷¬Šj‚ÌŠ„‡A––½ŒŒ‰t‚É‚¨‚¯‚錌‰t×–E”‚ÍA“dŽ¥ŠE”˜˜I‚É‚æ‚Á‚Ä—LˆÓ‚ɕω»‚µ‚È‚©‚Á‚½B
”DPŽž‚É‚¨‚¯‚é‘Sg‚Ì“dŽ¥ŠE”˜˜I‚Ͷ‚܂ꂽ‘ÙŽ™‚Ì‘¢ŒŒŒn‚ɉe‹¿‚Í‚µ‚È‚©‚Á‚½B
Long Abstract‚©‚ç‚Ì”²ˆ
A 2.14 GHz (Downlink) W-CDMA signal was used.
2.14GHz‚ÌŠî’n‹Ç‚©‚ç’[––‚ÉŒü‚©‚Á‚Ä”M‚³‚ê‚éW-CDMA‚ÌM†“d”g‚ð—p‚¢‚½B
–––––––––––––––––––––––––––––––––––––––––––––
9. Session PA:
Poster Session A ‚o‚`‚U‚T
Effects of exposure to
intermediate frequency magnetic fields on Neurite@Outgrowth in PC12VG Cells
PC12VG×–E‚É‚¨‚¯‚é’†ŠÔŽü”g”Ž¥ŠE”˜˜I‚̉e‹¿
Junji Miyakoshi1, Eijiro Narita1, Tomonori Sakurai1
& Naoki Shinohara1
1FDivision
of Creative Research and Development of Humanosphere,
Kyoto University, Uji, Japan, 611-0011
In this study, we investigated the influence of a 23 kHz magnetic field at 100 ƒÊT, which is approximately 4 times higher than the
reference level in the ICNIRP-2010 guidelines, on PC12VG cells neurite
outgrowth in vitro.
The exposure to an IF magnetic field of 23 kHz at 100 ƒÊT
for 7days has no significant effect on neurite outgrowth in PC12VG cells.
In the treated with 50 ng/ml NGF, the neurite length and the neurite-bearing
cells demonstrated a significant increase of neurite outgrowth.
‚±‚ÌŒ¤‹†‚Å‚Í23kHz@100ƒÊT‚Ì’†ŠÔŽü”g”Ž¥ŠE‚̉e‹¿‚𒲂ׂ½B
‚±‚ÌðŒ‚ÍICNIRP-2010‚̃KƒCƒhƒ‰ƒCƒ“‚É‹K’è‚·‚éŽQƃŒƒxƒ‹‚É4”{ˆÈã‚Ì‹“x‚Å‚ ‚éB
×–EŽÀŒ±‚Æ‚µ‚ÄAPC12VG×–E‚É‚¨‚¯‚é_Œo“Ë‹N‚Ì”h¶‚𒲂ׂ½B
7“úŠÔ‚Ì‚±‚Ì”˜˜IðŒ‚Å‚Í×–E“Ë‹N‚Ì”h¶‚É—LˆÓ‚ȉe‹¿‚Í‚È‚©‚Á‚½B
—z«‘ÎÆ‚Æ‚µ‚ÄNGF‚ð50ng/ml‚ð—^‚¦‚½ê‡‚ÍŽ²õ“Ë‹N‚Ì’·‚³‚ÆŽ²õ“Ë‹N—ÞŽ—‚Ì×–E‚Å‚ÍAŽ²õ“Ë‹N‚Ì”h¶‚É—LˆÓ‚È‘‰Á‚ª‚Ý‚ç‚ꂽB
––––––––––––––––––––––––––––––––––––––––
10. Session PA:
Poster Session A @PA67
Effects of exposure to
21kHz magnetic fields on estrogen-regulated gene expression in MCF-7 cells
21KH‚šŽ¥ŠE”˜˜I‚É‚æ‚éMCF-7×–E‚É‚¨‚¯‚éƒGƒXƒgƒQƒ“‚ªŠÖ—^‚·‚éˆâ“`Žq”Œ»‚ւ̉e‹¿
Yuki Ogasawara1, Masateru Ikehata2, Sachiko Yoshie2, Yukihisa Suzuki3, Satoshi Nakasono4, Chiyoji Ohkubo5
& Kazuyuki Ishii1
1FMeiji
Pharmaceutical University, Kiyose, Japan, 204-0004
To evaluate biological effects of intermediate frequency magnetic fields
(IF-MF), estrogen-regulated gene expression under magnetic fields were studied
using ERE-luc integrated MCF-7 cell.
Exposure to IF-MF (21 kHz, up to 3.9mT) for 24 hr did
not affect luciferase activity.
Also, no significant difference in luciferase activity was observed by IF-MF
exposure for 4 days although slight tendency of increase was observed.
These results suggest that IF-MF is unlikely to affect directly estrogen-regulated
gene expression.
’†ŠÔŽü”g”Ž¥ŠE‚̶‘̉e‹¿‚ðŒ¤‹†‚·‚邽‚ß‚ÉAŽ¥ŠE”˜˜I‰º‚É‚¨‚¯‚éƒGƒXƒgƒƒQƒ“ŠÖ˜A‚̈â“`Žq”Œ»‚ðAERE-luc‚ð–„‚ßž‚ñ‚¾MCF-7×–E‚ðŽg‚Á‚ÄA’²¸‚µ‚½B
21KHz‚ÅAÅ‘å3.9mTA24ŽžŠÔ‚Ì’†ŠÔŽü”g”Ž¥ŠE”˜˜I‚Å‚ÍluciferaseŠˆ«‚͉e‹¿‚³‚ê‚È‚©‚Á‚½B
‚³‚ç‚É4“ú‚Ì”˜˜I‚Å‚ÍA‚µ‚̕ω»‚ÍŠÏŽ@‚³‚ꂽ‚ªA—LˆÓ‚ȕω»‚ÍŠÏŽ@‚³‚ê‚È‚©‚Á‚½B
‚±‚ÌŒ‹‰Ê‚ÍA’†ŠÔŽü”g”Ž¥ŠE”˜˜I‚̓GƒXƒgƒƒQƒ“‚ªŠÖ˜A‚·‚éˆâ“`Žq”Œ»‚ɉe‹¿‚·‚é‚Æ‚ÍŒ¾‚¦‚È‚¢B
–––––––––––––––––––––––––––––––
11. Session O8: Human & Clinical@O8-1
Perception of RF Fields
Emitted from Smart Phones.
ƒXƒ}[ƒgƒtƒHƒ“‚©‚ç‚Ì‚Žü”g“dŽ¥ŠE‚ÌŠ´’m
Min Kyung Kwon1, 2, Joon Yul Choi1,
2, Sung Kean Kim1, 3, Tae Keun Yoo1,
4 & Deok Won Kim1, 2, 3, 4
1FDepartment
of Medical Engineering, Yonsei University, Seoul, Korea, 120-752
In this double-blinded study, we investigated perception with sham and real
exposures in 15 electromagnetic hyper-sensitivity (EHS) and 17 non-EHS subjects
using a wideband code division multiple access (WCDMA) module inserted a dummy
phone.
Experiment was conducted using the module with average power of 24 dBm at 1950
MHz and the specific absorption rate of 1.57 W/kg using a headphone for 32 min.
As conclusion, there was no evidence that the EHS group perceived the
electromagnetic fields better than the non-EHS group.
‚±‚Ì2d–ÓŒŸ–@‚É‚æ‚錤‹†‚Å‚ÍA15–¼‚Ì“dŽ¥”g‰ß•qÇŽÒ‚Æ17–¼‚Ì‚»‚¤‚Å‚È‚¢l‚ÉAW-CDMA•ûŽ®‚Ì“dŽ¥”g‚ð–Í‹[‚µ‚½“d˜b‚ð—p‚¢‚ÄA‹^Ž—”˜˜I‚Æ“dŽ¥ŠE”˜˜I‚É‚¨‚¯‚é“dŽ¥ŠE‚ÌŠ´’m‚𒲸‚µ‚½B
ŽÀŒ±‚Í–Í‹[‘•’u‚ð—p‚¢‚ÄA1950MHzA•½‹Ï“d—Í‚Í24dBmASAR‚Í1.57W/kg‚ÌðŒ‚ÅA32•ªŠÔs‚Á‚½B
Œ‹‰Ê‚Æ‚µ‚ÄA“dŽ¥”g‰ß•qǂ̃Oƒ‹[ƒv‚Í”ñ“dŽ¥”g‰ß•qǂ̃Oƒ‹[ƒv‚É”ä‚ׂÄA“dŽ¥ŠE‚ðŠ´’m‚·‚é‚Æ‚¢‚¤ŠmØ‚Í“¾‚ç‚ê‚È‚©‚Á‚½B
––––––––––––––––––––––––––––
12. Session PB:
Poster Session B @PB46
Effects of abdominal local
exposure of intermediate frequency (21kHz) magnetic fields on fetal development
in rats
’†ŠÔŽü”g”“dŽ¥”g‚Ì• •”‚Ö‚Ì‹ÇŠ”˜˜I‚É‚æ‚é‘ÙŽ™‚Ì”ˆç‚ւ̉e‹¿AƒlƒYƒ~‚Å‚ÌŽÀŒ±
Akira Ushiyama1, Shin Ohtani2, Machiko Maeda2, Yuki Hirai3, Yukihisa Suzuki3, Keiji Wada3, Naoki Kunugita1
& Chiyoji Ohkubo4
1FDepartment
of Environmental Health, National Institute of Public Health, Wako, Japan,
351-0197
Due to the lack of science based evidences of exposure effects of intermediate
frequency magnetic fields (IF-MFs), we teratologically evaluated them by using
pregnant rats.
Using newly-devised in vivo exposure apparatus which can expose IF-MFs locally
to the abdomen of rats being similar exposure conditions with pregnant women
standing close to induction heating (IH) cooking hob.
Obtained data are currently under analysis.
’†ŠÔŽü”g”Ž¥ŠE‚Ì”˜˜I‚É‚æ‚é‰e‹¿‚ÉŠÖ‚·‚é‰ÈŠw“I‚ÈŠmØ‚ª‚È‚¢‚Ì‚ÅA”DPƒlƒYƒ~‚ð—p‚¢‚ÄAŠïŒ`Šw“I‚É•]‰¿‚ðs‚Á‚½B
”DP—«‚ª‚h‚g’²—Ší‚Ì‘O‚É—§‚Á‚½ðŒ‚Æ—ÞŽ—‚ÌðŒ‚É‚È‚é‚悤‚ÉAƒlƒYƒ~‚Ì• •”‚ª‹ÇŠ“I‚ÉŽ¥ŠE‚É”˜˜I‚·‚é‚悤‚È”˜˜I‘•’u‚ðV‹K‚É쬂µ‚½B
“¾‚ç‚ꂽƒf[ƒ^‚ÉŠÖ‚µ‚Ä‚ÍŒ»ÝA‰ðÍ’†‚Å‚ ‚éB
Long Abstract‚©‚çˆê•””²ˆ
We set MFs intensity to 10.3 mT at the center of
abdominal surface. Exposure (or sham exposure) was done for 1hr/day from
gestation day 7 up to 17.
Ž¥ŠE‚Í• •”‚Ì•\–Ê’†‰›•”‚Å10.3‚‚s‚Ì‹“x‚Éݒ肵‚½B
”˜˜IE‹^Ž—”˜˜I‚͉ù”D7“ú–Ú‚©‚ç17“ú–Ú‚Ü‚Å1“ú1ŽžŠÔ‚Ì”˜˜I‚Æ‚µ‚½B
We examined numeral dosimetry using a pregnant rat model of gestation day 16
rat. Under the exposure conditions described above, induced electric field of
each fetus ranged between 0.611 to 5.74 V/m (mean 3.01V/m) depending on the
relative position to the spiral coil.
The mean value is higher than the basic restriction to general public exposure
(2.83 V/m at 21 kHz) of ICNIRP Guidelines [3].
‰ù”D16“ú–Ú‚Ì”DPƒlƒYƒ~‚ðƒ‚ƒfƒ‹‚É”’l‰ðÍ‚Å”˜˜I‚𒲂ׂ½B
‚±‚ÌŒ¤‹†‚Å‚Ì”˜˜IðŒ‚Å‚Í‚»‚ꂼ‚ê‚Ì‘ÙŽ™‚É—U“±‚³‚ê‚é“dŠE‹“x‚ÍŽ¥ŠEƒRƒCƒ‹‚Æ‚Ì‘Š‘ΓI‚Ȉʒu‚É‚æ‚Á‚Ä0.611‚©‚ç5.74V/m‚͈̔͂ɂ ‚èA•½‹Ï’l‚Í3.01V/m‚Å‚ ‚Á‚½B
‚±‚Ì•½‹Ï’l‚Í‚h‚b‚m‚h‚q‚oƒKƒCƒhƒ‰ƒCƒ“‚É‹K’è‚·‚éˆê”ÊŒöO‚Ö‚ÌŠî‘bŽwj’li21KHz‚Å‚Í2.83V/mj‚ð’´‚¦‚Ä‚¢‚éB
–––––––––––––––––––––––––––––––––
13. Session ENA: ENA Workshop@@ENA-1
An Australian
measurement survey of RF and ELF emissions from Smart Meters
ƒI[ƒXƒgƒ‰ƒŠƒA‚É‚¨‚¯‚éƒXƒ}[ƒgƒ[ƒ^‚©‚ç•úŽË‚³‚ê‚é‚Žü”gE’áŽü”g“dŽ¥ŠE‚Ì‘ª’èA
Chris Zombolas1 & Andrew Wood2
1FEMC
Technologies, Keilor Park, Australia, Vic 3042
In response to a state government commission, the emissions from Smart Meters
at 16 locations were measured and compared against relevant ELF and RF
standards.
For RF, when adjusted for estimated worst case duty cycle and possible
reflections, the meters were found to be less than 1% of the limit.
B•{ˆÏˆõ‰ï‚Ì—v¿‚ÅA16‚©Š‚ŃXƒ}[ƒgƒ[ƒ^‚©‚ççtŽË‚³‚ê‚é’áŽü”g‚Æ‚Žü”g‚Ì“dŽ¥ŠE‚𑪒肵AƒI[ƒXƒgƒ‰ƒŠƒA‚Ì‹KŠi‚Æ”äŠr‚µ‚½B
‚Žü”g‚ÉŠÖ‚µ‚Ă͉”\«‚Ì‚ ‚锽ŽË‚âň«‚Ì”MŠ„‡‚Ì„’è‚É‚æ‚Á‚Ä’²®‚ð‰Á‚¦‚½BŒ‹‰Ê‚Í‹K’è‚Ì‚P“ˆÈ‰º‚Å‚ ‚邱‚Æ‚ª”»‚Á‚½B
Table 1FƒXƒ}[ƒgƒ[ƒ^‚©‚ç30cm‚Ì‹——£‚É‚¨‚¯‚锘˜I‹“x‚ðARPANSA‚Ì‹K’è’l‚ɑ΂·‚銄‚ðŽ¦‚·B
Å‘å‚Ì”MŠ„‡‚ÌðŒB–50cm‚Å‚Ì‚Ý‘ª’è@@––•¡”‚̃[ƒ^‚ªÝ’u‚³‚ꂽ‰ÓŠ@NMF–¢‘ª’è