ŠwpŠw‰ï‚ÌŒ¤‹†“™‚ÌЉîƒR[ƒi[

@
¶‘Ì“dŽ¥‹CŠw‰ïBEMS‚̉ïˆõƒjƒ…[ƒX‚â˜_•¶Ž‚ÌŠT—v‚ðЉî@

Œ¤‹†ŠT—vƒgƒbƒv‚Ö
@

BEMS‰ïˆõƒjƒ…[ƒX‚©‚ç‚Ì”²ˆ 

‚PD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡ 1996‚ÌŠT—v

‚P‚`D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept/Oct@1997”N‚ÌŠT—v

‚QD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Jan^April@‡•¹†1998”N‚ÌŠT—v
‚Q‚`DBEMS@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@July^Aug@1998‚ÌŠT—v
‚Q‚aDBEMS Newsletter Sept/Oct@1998‚ÌŠT—v
‚Q‚bDBEMS Newsletter@Jan^Feb@1999‚ÌŠT—v

‚RD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@March/April 2000‚ÌŠT—v
‚R‚`DBEMS Newsletter May^June@2000‚ÌŠT—v
‚R‚aD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@July/Aug 2000‚ÌŠT—v
‚R‚bD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚r‚…‚‚”^‚n‚ƒ‚”@2000‚ÌŠT—v@
‚SD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Nov/Dec@2000‚ÌŠT—v

‚TD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Jan/Feb 2001‚ÌŠT—v
‚UD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@March/April2001‚ÌŠT—v
‚VD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@May/June 2001‚ÌŠT—v
‚WD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@July/Aug 2001‚ÌŠT—v
‚XD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept/Oct 2001‚ÌŠT—v
‚P‚OD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@No‚–/Dec 2001‚ÌŠT—v

‚P‚PD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Jan/Feb 2002‚ÌŠT—v
‚P‚QD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@March/April 2002‚ÌŠT—v
‚P‚R
D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@May^Jun@2002‚ÌŠT—v
‚P‚SD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡@2002‚ÌŠT—v
‚P‚TD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚r‚…‚‚”^‚n‚ƒ‚”@2002‚ÌŠT—v

‚P‚UD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚’‚ƒ‚ˆ^‚`‚‚’‚‰‚Œ@2003‚ÌŠT—v@D
‚P‚VD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚™^‚i‚•‚Ž‚…@2003‚ÌŠT—v@

‚P‚WD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept^Oct@2003‚ÌŠT—v


‚P‚XD@‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX@2006”N‚i‚‚Ž^‚e‚…‚‚†‚©‚ç

‚P‚X‚`D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚’‚ƒ‚ˆ^‚`‚‚’‚‰‚Œ 2006‚ÌŠT—v@

1
‚X‚aD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡@2006‚ÌŠT—v@
‚Q‚OD‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX@2006”NSept^Oct†‚©‚ç
‚Q‚PD‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX@2006”N‚m‚‚–^‚c‚…‚ƒ†‚©‚ç

‚Q‚QD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@April^May@2007‚ÌŠT—v
‚Q‚Q‚`D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@May^‚i‚•‚Ž‚…@2007‚ÌŠT—v
‚Q‚RD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept^Oct@2007‚ÌŠT—v
‚Q‚SD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Nov^Dec@2007‚ÌŠT—v


 

 

BEMS˜_•¶Ž‚ÌŠT—v

‚PDBio ElectroMagnetics No.1 1994 ˜_•¶Ž‚ÌŠT—vD
1A
DBio ElectroMagnetics No.2 1994 ˜_•¶Ž‚ÌŠT—vD
‚PBDBio ElectroMagnetics No.3 1994 ˜_•¶Ž‚ÌŠT—vD
‚PCDBioElectroMagnetics No.4 1994 ˜_•¶Ž‚ÌŠT—vD
‚QDBio Electro Magnetics No.3 1996 ˜_•¶Ž‚ÌŠT—vD
‚Q‚`DBio Electromagnetics No8, 1997‚ÉŒfÚ‚³‚ꂽ˜_•¶‚ÌŠT—v
‚Q‚aDBio ElectroMagneticsNo.3 ‚`‚‚’‚‰‚Œ@1999”N@˜_•¶Ž‚ÌŠT—v

‚RDBio Electromagneti‚ƒ‚“ No.8 DEC.1999”N ˜_•¶Ž‚ÌŠT—v
‚R‚aDBio Electro Magnetics No.3 April 2000 ˜_•¶Ž‚ÌŠT—v
‚SDBio Electro Magnetics No.8 DECD2000 ˜_•¶Ž

‚S‚`DBio ElectromagneticsŽNo.1 Jan 2008˜_•¶Ž‚ÉŒfÚ‚³‚ꂽ9Œ‚̘_•¶‚ÌŠT—v‚Æ‚»‚ÌŒXŒü

‚TDBio ElectromagneticsŽNo.8 ‚c‚d‚b 2010˜_•¶Ž‚ÉŒfÚ‚³‚ꂽ˜_•¶

‚UDBEMS Vol. 37 No. 6@2016”N9ŒŽ@˜_•¶Ž‚ÉŒfÚ‚³‚ꂽ˜_•¶


‚a‚d‚l‚r‘‰ï—\eW‚©‚ç@

1DBEMS1999”N‘‰ï—\eW‚©‚ç
1
‚`DBEMS2000”N‘‰ï—\eW‚©‚ç
2DBEMS2001”N‘‰ï‚Ì—\eW‚©‚ç@
3. BEMS 2002”N@”NŽŸ‘‰ï‚Ì—\eW‚©‚ç
‚S. BEMS 2012”N‘‰ï‚Ì—\eW‚©‚ç

---

 

‚PD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡ ‚P‚X‚X‚U‚ÌŠT—v


•Ä‘¶‘Ì“dŽ¥‹CŠw‰ïiBEMS)‚̃jƒ…[ƒXƒŒƒ^[‚X‚U”N‚VE‚WŒŽ†‚©‚ç‚Q“_‚Ù‚ÇЉîB

‚PB“dŽ¥”g‚̶‘̉e‹¿“™‚Ì‘Û‰ï‹cA@
@‚P‚OŒŽ‚R‚O“ú‚©‚çƒIƒ‰ƒ“ƒ_‚̃Aƒ€ƒXƒeƒ‹ƒ_ƒ€‚ÅŠJÃBŽåÂ͂h‚d‚d‚dB@
@’áŽü”g“dŽ¥ŠE‚̃ZƒbƒVƒ‡ƒ“‚à“Æ—§‚µ‚ÄAÝ‚¯‚ç‚ê‚Ä‚¢‚Ü‚·B@

‚QB‚h‚d‚d‚d‚É‚¨‚¯‚é“dŽ¥”g‚ƶ‘̉e‹¿‚̘_•¶¸“ÇŒ‹‰Ê@

ŠeŽí˜_•¶‚̃f[ƒ^ƒx[ƒX‚ðì‚é–Ú“I‚ʼnߋŽ‚̘_•¶‚ð¸“Ç‚µ‚Ä‚¢‚é‚»‚¤‚Å‚·B
ˆê•Î‚̘_•¶‚ð‚Q–¼‚Ìê–å‰Æ‚ª“Ç‚ñ‚ÅAƒf[ƒ^ƒx[ƒX‚ÉŽc‚·‚ׂ«M—Š‚Å‚«‚é—Ç‚¢Œ¤‹†•ñ‘‚©A‹^–â‚ÌŽc‚éˆ×‚Ƀf[ƒ^ƒx[ƒX‚É‚ÍÌ—p‚Å‚«‚È‚¢Œ¤‹†•ñ‘‚©‚Ì”»•Ê‚ðs‚È‚Á‚Ä‚¢‚éB


‚Q–¼‚Ì”»’肪‘å‚«‚­ˆÙ‚È‚é˜_•¶‚Í‚Rl–Ú‚Ìê–å‰Æ‚ª¸“Ç‚µ‚Ä@”»’è‚·‚é‚Æ‚¢‚¤ƒ‹[ƒ‹‚Ås‚È‚Á‚Ä‚¢‚éB@

‘æ‚P‰ñ‚̸“Ç‚Å@IN VITROi×–EƒŒƒxƒ‹AŽŽŒ±Š¯“à‚ł̃eƒXƒg“™j‚ÌŒ¤‹†F@
˜_•¶‚S‚RŒ’†‚R‚RŒ‚ª‚‚‹Ai‚‚‹—¦@‚V‚V“j@@

IN VIVO (
¶‘Ì‘S‘̂ł̃eƒXƒg“™j‚ÌŒ¤‹†F
•ñ‘‚R‚VŒ’†‚Q‚VŒ‚Í‚‚‹@i‚‚‹—¦‚V‚R“j@

‰uŠw‚ÌŒ¤‹†F@
•ñ‘‚P‚SŒ’†‚SŒ‚ª‚‚‹@i‚‚‹—¦‚Q‚X“j@
‚Æ‚¢‚¤Œ‹‰Ê‚¾‚Á‚½‚»‚¤‚Å‚·B@

‚±‚̂悤‚ÉŒ¤‹†˜_•¶‚Í‘‚©‚ê‚ÄŒö•\‚·‚ê‚΂»‚ê‚Å‘S‚Ä‚ªM—Š‚Å‚«‚鳂µ‚¢Œ¤‹†‚Å‚ ‚é‚Æ”F‚ß‚Ä‚à‚炦‚é‚Æ‚ÍŒ¾‚¦‚È‚¢‚悤‚Å‚·B@

Ž„‚͉uŠwŒ¤‹†‚̃f[ƒ^ƒx[ƒX‚ÉÌ—p‚³‚ê‚銄‡‚ª’á‚¢‚Ì‚ª‹C‚É‚È‚è‚Ü‚·B@
‰uŠw’²¸‚Æ‚¢‚¤‚à‚Ì‚Í‚»‚ꂾ‚¯Œë·‚ª‘å‚«‚©‚Á‚½‚èAFX‚É•¡ŽG‚ÈðŒ‚Ì®—‚ª‘å•Ï‚ÅA–T‚©‚ç‚Ý‚é‚ÆŒ¤‹†‚ª•s\•ª‚Æ‚¯‚¿‚ð•t‚¯‚ç‚êˆÕ‚¢Žè–@‚¾‚Á‚½‚è‚·‚é‚Ì‚©‚à‚µ‚ê‚Ü‚¹‚ñB@
‰uŠw‚ð‚â‚Á‚Ä‚¢‚é•û‚É‚Í\‚µ–ó‚È‚¢‚±‚Æ‚Å‚·‚ªB

FX‚ÈŒ¤‹†Œ‹‰Ê‚ð“Ç‚ÞŽž‚ÉA‚P‚O‚O“³‚µ‚¢‚ÆM‚¶‚«‚Á‚Ä‚Í‘Ê–Ú‚ÅA‘½­‚È‚è‚Æ‚à‹^‚Á‚Ä‚Ý‚é•K—v‚ª—L‚è‚Ü‚·B


•Åƒgƒbƒv‚É–ß‚é


---

 

‚P‚`D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept/Oct@‚P‚X‚X‚V”N‚ÌŠT—v@

 

–Ž¥ŠE‚͈ã—ÂÌfŽ@‚⎡—Âɗ˜—p‚³‚ê‚Ä‚¢‚éB‚»‚Ì‘Û‰ï‹c‚ªƒJƒiƒ_‚ÅŠJ³‚ꂽB

 

Nancy@Wertheimeri1979”N‚ɬŽ™‚ª‚ñ‚ÆŽ¥ŠE‚ÌŠÖ˜A‚ðŽ¦´‚µ‚½˜_•¶‚ð‘‚¢‚½Œ¤‹†ŽÒj‚©‚ç‚̃Rƒƒ“ƒg

Ž¥ŠE‚ƬŽ™‚ª‚ñ‚Ȃǂ̉uŠw’²¸‚ÅA‚æ‚­2mGƒJƒbƒgƒ|ƒCƒ“ƒg‚É‚µ‚ĉðÍ‚ªs‚í‚ê‚Ä‚¢‚邪A‚±‚̃Jƒbƒgƒ|ƒCƒ“ƒg‚Í2mG‚Å‚Í‚È‚­A3mG‚Ås‚¤‚ׂ«‚Å‚ ‚éB

Wertheimer‚̘_•¶‚Å‚ÍAƒƒCƒ„EƒR[ƒh‚ʼnðÍ‚ðs‚Á‚Ä‚¢‚邪A3mGˆÈã‰]X‚ƃJƒbƒgƒ|ƒCƒ“ƒg‚Æ‚µ‚Ä3mG‚ð’ñ¥‚µ‚Ä‚¢‚éB

‚±‚Ì3mG‚Æ‚¢‚¤ƒJƒbƒgƒ|ƒCƒ“ƒg‚Å‘¼‚̉uŠwŒ‹‰Ê‚ðƒƒ^‰ðÍ‚Ås‚¦‚ÎAŽ¥ŠE‚ª¬Ž™‚ª‚ñ‚ð—U”­‚µ‚Ä‚¢‚é‚Æ‚¢‚¤Œ‹‰Ê‚ª“¾‚ç‚ê‚éB

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚QD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚‚Ž^‚`‚‚’‚‰‚Œ@‡•¹†‚P‚X‚X‚W”N‚ÌŠT—v

 

‚PjBEMS‚̉M. Blank‚©‚ç‚Ì•ñ

1997”N‚ÉLINET‚É‚æ‚Á‚ÄN. E. J of Medicine‚É”­•\‚³‚ꂽ‘—“dü‚©‚ç‚ÌŽ¥ŠE‚ƬŽ™Šà‚ÌŠÖŒW‚Ì•ñ‘‚ÉŠÖ˜A‚µ‚ÄA]—ˆ‚Í‚±‚¤‚µ‚½‰uŠw’²¸‚ł̓JƒbƒgƒIƒt“_‚ð‚Qƒ~ƒŠƒKƒEƒX‚Éݒ肵‚Ä—ˆ‚½‚ªAFX‚ȉߋŽ‚ÌŒ¤‹†‚©‚ç‚Ý‚ê‚ÎA‚±‚̃JƒbƒgƒIƒt“_‚Í‚Rƒ~ƒŠƒKƒEƒX‚É‚µ‚½‚Ù‚¤‚ª—Ç‚¢B

‚±‚Ìl‚¦•û‚É—§‚Ä‚ÎAŽ¥ŠE‚ͬŽ™Šà‚ÆŠÖŒW‚È‚¢‚ÆŒ¤‹†ŽÒ‚ªŒ‹˜_‚ð‚¾‚µ‚½Œ¤‹†‚Å‚àuŽ¥ŠE‚ͬŽ™‚ª‚ñ‚ÉŠÖ˜A‚·‚év‚Æ‚¢‚¤Œ‹˜_‚É’u‚«Š·‚¦‚ç‚ê‚éB

@

‚k‚‰‚Ž‚…‚”‚ÌŒ¤‹†F‚ˆ³‘—“dü‚©‚ç‚ÌŽ¥ŠE‚ðŽó‚¯‚Ä‚¢‚éŽq‹Ÿ‚ð‘ÎÛ‚Æ‚µ‚½Œ¤‹†B

‚Qƒ~ƒŠƒKƒEƒXˆÈã‚Ì”˜˜IŒQ‚Æ‚»‚êˆÈ‰º‚Ì”˜˜IŒQ‚É•ª‚¯‚ÄŒŸ“¢‚µ‚½Œ‹‰Ê‚Å‚ÍA‚Qƒ~ƒŠƒKƒEƒXˆÈã‚ÌŽ¥ŠE”˜˜I‚Å‚ÍŠà‚ð‘‰Á‚³‚¹‚È‚¢‚±‚Æ‚ª‚í‚©‚Á‚½A‚Æ‚¢‚¤‚±‚Æ‚©‚çAŽ¥ŠE‚ÍŒ’N‰e‹¿‚ðˆø‚«‹N‚±‚µ‚Ä‚¢‚È‚¢A‚Æ‚¢‚¤Œ‹˜_‚ð‚¾‚µ‚½B

‚µ‚©‚µA‚Rƒ~ƒŠƒKƒEƒXˆÈ㔘˜IŒQ‚ƈȉº‚Ì”˜˜IŒQ‚É•ª‚¯‚ÄŒvŽZ‚·‚é‚ÆA‚Rƒ~ƒŠƒKƒEƒXˆÈã‚ÌŽ¥ŠE”˜˜I‚ÍA¬Ž™Šà‚ð‘‰Á‚³‚¹‚é‹°‚ꂪ‚ ‚é‚Ɠǂ߂錤‹†‚Å‚ ‚éB

 

iBEMSJƒRƒƒ“ƒgFƒJƒbƒgƒIƒt“_‚Ì‘I‘ð‚ÅA‰uŠw’²¸‚ÌŒ‹˜_‚ª¶‰E‚³‚ê‚邱‚ƂɂȂ邪A‚à‚Á‚Æ‘åØ‚È‚±‚Æ‚ÍAŒ¤‹†‘ÎÛ‚Æl‚¦‚½Ž¥ŠE‚ªAƒhƒ~ƒiƒ“ƒg‚È”˜˜IŒ¹‚É‚È‚Á‚Ä‚¢‚é‚©‚ÌŒŸØ‚ð‚¨‚±‚È‚¤‚±‚Æ‚Å‚ ‚éB

Ô‚ñ–V‚¾‚¯‚ð‘ÎÛ‚Æ‚·‚ê‚ΉƂ̋ߖT‚É‚ ‚é‘—“dü‚©‚ç‚ÌŽ¥ŠE‚¾‚¯‚ðŽó‚¯‚Ä‚¢‚é‚Æ„’èo—ˆ‚邪A‘å‚«‚­‚È‚ê‚ΉƂł̶ŠˆŽžŠÔŠO‚ÌŽžŠÔ‚Å‚Ç‚¤‚¢‚¤Ž¥ŠE‚É”˜˜I‚µ‚Ä‚¢‚é‚©ŒÂXl‚É‚æ‚Á‚Ä‘å‚«‚­ˆÙ‚È‚Á‚Ä‚­‚é‚Ì‚ÅA’Pƒ‚ÉŽ©‘î‚Å‚Ì‘—“dü‚©‚ç‚ÌŽ¥ŠE‚¾‚¯‚Å‚Í‚·‚Ü‚È‚­‚È‚éBj

 

‚QjBEMS‚̉ïˆõ‚ÍA‘‰ïŠÖŒWŽÒ‚ÉŒü‚©‚Á‚ÄAuRapidŒv‰æ‚ª1998”N‚ÅI—¹‚µ‚È‚¢‚ÅA“dŽ¥”g‚̶‘̉e‹¿‚ÌŒ¤‹†‚ðŒp‘±‚·‚ׂ«v‚Æ‚¢‚¤ŽèŽ†‚ð‘‚«‚Ü‚µ‚傤B

iBEMSJƒRƒƒ“ƒgFBEMS‚̉ïˆõ‚àŒ¤‹†Ž‘‹à‚ªŒÍ‚ê‚Ä‚Í¢‚é‚Ì‚Å‚ ‚낤Bj

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚Q‚`D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@JULY^AUG@1998‚ÌŠT—v


‚PjƒI[ƒXƒgƒ‰ƒŠƒA­•{‚ª“dŽ¥ŠE‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚錤‹†‚É’—Í
¡Œã4”N”¼‚ÌŠÔ‚ÅA‚SE‚T•S–œƒhƒ‹‚ð€”õB@
Œg‘Ñ“d˜b‚̃nƒ“ƒhƒZƒbƒg‚Æ’†Œp“ƒ‚©‚ç‚Ì“dŽ¥”g‚ÉŠÖ‚·‚錒N‰e‹¿‚ÉŠÖS‚ª ‚‚Ü‚Á‚Ä‚¢‚邱‚Æ‚©‚çƒXƒ^[ƒg‚µ‚½B Œ¤‹†‚Æ“¯Žž‚Ɉê”ÊŽs–¯‚Éî•ñ‚ð’ñ‹Ÿ‚·‚éB

‚Qj‚q‚`‚o‚h‚c•ñ‘@
‚a‚d‚l‚r‚̉ïˆõ‚ÍA‚q‚`‚o‚h‚cŒv‰æ‚Ì•ñ‘‚ðA’P‚Ƀjƒ…[ƒXƒŠƒŠ[ƒX‚ð“Ç‚Þ‚¾‚¯‚Å‚Í‚È‚­A•ñ‘‚ÌŒ´•¶‚ð“ǂނׂ«‚Å‚ ‚éB@

‚Rj‚a‚d‚l‚r‚ÌŠˆ“®@
‚a‚d‚l‚r‚Æ‚µ‚Ä‚ÍA“dŽ¥ŠE‚ÌŒ’N‰e‹¿‚ðŒ¤‹†‚·‚éi‚¢‚í‚ä‚é“dŽ¥”g‚̈«‚¢–Êj‚¾‚¯‚Å‚Í‚È‚­A”ñ“d—£•úŽËü‚̈ã—Âւ̉ž—p‚àŒ¤‹†‚·‚ׂµi‚¢‚í‚ä‚é“dŽ¥”g‚Ì—Ç‚¢–ÊjB

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚Q‚aDBEMS Newsletter Sept/Oct@1998‚ÌŠT—v

 

‚PjNATO‚ÌRF“dŽ¥”g”˜˜I‚ÉŠÖ‚·‚éƒ[ƒNƒVƒ‡ƒbƒvŠJÃ

1998”N10ŒŽ12|16“ú@ƒXƒƒxƒjƒA‚ÅŠJÃB

@@

‚QjEC‚Å‚ÌŒ¤‹†

1997[2000”N‚É‚©‚¯‚ÄA“S“¹ŠÖŒWŽÒ‚ÌŽ¾•a‚ÌŒ¤‹†‚ðs‚¤B

“S“¹‚É—‚Þ“dŽ¥”g‚̉e‹¿‚ÍA‚ ‚Ü‚è’–Ú‚ð—‚Ñ‚Ä‚Í‚¢‚È‚¢‚ªA_ŒoŒn‚âS‘Ÿ•a‚Æ‚ÌŠÖŒW‚𒲸‚·‚éB

ƒXƒCƒX‚Ì“S“¹]‹Æˆõ‚ð‘ÎÛ‚Æ‚µ‚½ƒRƒz[ƒgŒ¤‹†i18000lA1972|1993”Nj‚ÅA‹@ŠÖŽè‚ÉS‘Ÿ‚ÌŠ¥ó“®–¬‚ÌŽ¾Š³‚ª‘½‚¢‚ÆŒ¾‚¤Œ¤‹†‚ª‚ ‚éB
‚±‚ê‚ç‚ÌŽ¾•a‚ÆŽ¥ŠE‚̉e‹¿‚𒲸‚·‚éB

ƒƒVƒA‚Ì“S“¹i’¼—¬“d‰»j‚ÆAƒXƒCƒX‚Ì“S“¹i16Hz‚̌𗬓d‰»j‚ÅŽ¥ŠE”˜˜I‚𒲸ŠJŽn‚µ‚Ä‚¢‚éB

‚±‚ê‚ç‚©‚瓾‚ç‚ꂽ”˜˜IðŒ‚ðŠî‚ÉA“®•¨ŽÀŒ±‚âl‚É”˜˜I‚µ‚½Žž‚̉e‹¿‚ðŒ¤‹†‚µ‚Ä‚¢‚­B

iBEMSJƒRƒƒ“ƒgF’¼—¬Ž¥ŠE‚àŒ¤‹†‚Ì‘ÎÛ‚ÉŽæ‚èã‚°‚Ä‚¢‚éA‚±‚ê‚Í’¼—¬‚Å‚àŽžŠÔ•Ï“®‚ª‚ ‚é‚©‚ç‚Æ„’èj

 

‚Rj‘—“dü‚Æ—«‚Ì“ûŠà‚ÌŠÖŒW@by Roger SantiniiƒCƒ^ƒŠ[j

i‚PjÅ‹ß‚ÌFeychting‚Ì•ñiEpidemiology, 1998”Nj‚É‚æ‚ê‚ÎA‘—“dü‚ÌŽ¥ŠEi‚Pƒ~ƒŠƒKƒEƒXˆÈãj‚ðŽó‚¯‚Ä‚¢‚é—«‚ÅAEstrogen receptor-Positive‚È—«‚ÉA“ûŠà‚Ì‘Š‘Ί댯—¦‚ðŒ©‚Â‚¯‚½A‚Æ‚¢‚¤Œ¤‹†‚ª‚ ‚éB

i‚Qj1994”N‚ÌRieter‚Ì•ñ‚ÅA‘—“dü‚©‚ç‚ÌŽ¥ŠE‚̓ƒ‰ƒgƒjƒ“‚ð’ቺ‚·‚éA‚Æ‚¢‚¤Œ¤‹†‚ª‚ ‚éB@

i‚Rj1982”N‚ÌDanforth‚Ì•ñ‚É‚æ‚ê‚ÎAEstrogen receptor-Positive‚È“ûŠà‚Ì—«‚ÍA–éŠÔ‚̃ƒ‰ƒgƒjƒ“‚Ì—Ê‚ª‘ÎÛ‚É”ä‚ׂĒႢA‚Æ‚¢‚¤Œ¤‹†‚ª‚ ‚éB

 

@‚±‚¤‚µ‚½‚±‚Æ‚©‚çA Estrogen receptor-Positive‚È—«‚Ì“ûŠà‚̃ƒJƒjƒYƒ€‚ÉA‘—“dü‚ÌŽ¥ŠE‚ª‰e‹¿‚µ‚Ä‚¢‚é‚Æl‚¦‚ç‚ê‚éB

 

i‚Pj‚ÉЉ‚½1998”N‚ÌŒ¤‹†‚ÌŒ´’˜‚ð“Ç‚ñ‚Å‚Ý‚½‚¢BŒ’N‚ÈEstrogen receptor-Positive‚È—«‚Æ‚»‚¤‚Å‚È‚¢—«‚Ì‚QŒQ‚ð‚ ‚ç‚©‚¶‚ßݒ肵‚ÄA2ŒQ‚Æ‚à‚É‘—“dü‚Ì‹ß‚­‚Å5”N‚È‚¢‚µ10”NZ‚Ý‘±‚¯‚½B
‚»‚ÌŒ‹‰Ê‚Æ‚µ‚ÄA2ŒQ‚ÌŠÔ‚Ì”­•a‚µ‚½“ûŠà‚É·ˆá‚ª‚ ‚Á‚½‚Æ‚¢‚¤‚Ì‚Å‚ ‚ê‚ÎAŒ¤‹†‚Í‚¤‚È‚¸‚¯‚éB
“ûŠà‚É‚È‚Á‚Ä‚µ‚Ü‚Á‚½l‚ÆŒ’N‚Èl‚ÌŠÔ‚ÅA Estrogen receptor-Positive‚È—«‚ÌŠ„‡‚ª‘½‚©‚Á‚½‚Æ‚¢‚¤‰uŠw’²¸‚Å‚ ‚ê‚ÎA‰uŠw’²¸‚̸“x‚âŒÀŠE‚ðl—¶‚µ‚È‚¯‚ê‚΂Ȃç‚È‚¢Bj

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚Q‚bDBEMS Newsletter@Jan^Feb@1999‚ÌŠT—v


‚±‚̆‚Å‚ÍARapidƒŒƒ|[ƒg‚ÉŠÖ‚µ‚ÄA98”N7ŒŽ‚ÌDraft‚É‘±‚¢‚ÄA98”N12ŒŽ‚ÉDraft-2‚ªo‚½A‚Æ‚¢‚¤î•ñ“™‚ªŒfÚ‚³‚ê‚Ä‚¢‚éB

 

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚RD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@March/April 2000‚ÌŠT—v

 

Bio@Electromagnetics Society(BEMS)‚̉ïˆõŒü‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’‚ÅMarch^April@2000‚ÌŠT—v‚ðŽQl‚Ü‚Å‚ÉЉ‚Ü‚·B

‚Pj@‰ïˆõƒjƒ…[ƒX‚ÌV•ÒWŽÒ‚̈¥ŽA‚©‚ç@
BEMS
‚Í‚»‚ÌŠˆ“®ŠJŽn‚Ì‚Q‚O”NˆÈã‘O‚ÍAƒ}ƒCƒNƒ”g“™‚Ì‚Žü”g‚Ì”Mì—p‚Æ‚¢‚Á‚½¶‘̉e‹¿‚©‚猤‹†Šw‰ïŠˆ“®‚ªŽn‚Ü‚Á‚½B‚»‚ÌŒã’áŽü”g“dŽ¥ŠE‚ÌŒ¤‹†‚ðs‚¢A¡‚ÍÄ‚Ñ‚©‚‚Ă̂Žü”g‚ÉŠÖ‚·‚錤‹†iŒg‘Ñ“d˜b“™j‚É–ß‚è‚‚‚ ‚éB

iRAPID•ñ‚ª”­s‚³‚ꂽ‚Ì‚ÅAŠwŽÒ‚Ì‹»–¡‚ÍŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ÌŒ¤‹†‚É‹»–¡‚Ì•ûŒü‚ª•ÏX‚³‚ꂽ‚Æ‚¢‚¤‚©AŒ¤‹†Ž‘‹à‚𓾂ç‚ê‚éƒe[ƒ}‚Ì•ûŒü‚ª•Ï‚í‚Á‚½‚Æ‚¢‚¤‚±‚Æ‚É‚È‚éBj@

‚Qj@‰¢B‚Ì“®Œü@
ICNIRP
‚̃KƒCƒhƒŠƒAƒ“‚ÉEU“™‚Í’Ç]‚µ‚悤‚Æ‚µ‚Ä‚¢‚邪A‰¢B‚̈ꕔ‚Ì‘‚ÍICNIRP‚É‚æ‚炸AX‚ÉŒµ‚µ‚¢–\˜IŠî€‚ð’ñˆÄ‚µ‚Ä‚¢‚éB@EBEAi‰¢B‚̶‘Ì“dŽ¥‹CŠw‰ïj‚Æ‚µ‚Ä錾‚ðo‚»‚¤‚Æ‚µ‚Ä‚Ý‚éB@
ˆÈ‰º‚ÌWEB‚É錾ˆÄ‚ð’ñŽ¦‚µ‚Ä‚ ‚é‚Ì‚ÅAŽ^¬‚·‚é•û‚Í“dŽqƒTƒCƒ“‚ÅŽQ‰Á‚µ‚Ä—~‚µ‚¢B
@@http://www.ebea.org/EBEA/menu.html@
‚Ü‚½@EC‚Ì“dŽ¥”gŠÖ˜A‚͈ȉº‚ÌWEB‚ÉÝ‚éB@
http://europa.eu.int/comm/off/com_health_consumer/precaution.htm

3
j ‚d‚b‚Ì“dŽ¥”g‚̶‘̉e‹¿‚ÌŒ¤‹†@
‚TŒ‚̃e[ƒ}‚ÅŒ¤‹†‚³‚ê‚éB@‚±‚Ì‚TŒ‚Æ‚à‘S‚ÄŒg‘Ñ“d˜bŠÖ˜A‚Ì‚Žü”g“dŽ¥”g‚ÌŒ¤‹†‚Å‚ ‚èA’áŽü”g‚ÌŒ¤‹†ƒe[ƒ}‚Í‚È‚¢B@

‚Sj@ƒI[ƒXƒgƒŠƒA‚̃Uƒ‹ƒcƒuƒ‹ƒO‚ÅŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚é‘Û‰ï‹c‚ª‚UŒŽ‚ÉŠJ³‚ê‚éB@

 


•Åƒgƒbƒv‚É–ß‚é

---

 

‚R‚`DBEMS Newsletter May^June@2000‚ÌŠT—v

 

@BEMS‚̉ïˆõƒjƒ…[ƒX‚ÅA‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B

 

‚PDRAPIDŒv‰æ‚Ì•ñ‘

 

NIEHS‚Í“dŽ¥ŠE‚ÌŒ’N‚ª‚ ‚Á‚½‚Æ‚µ‚Ăଂ³‚¢‚ÆM‚¶‚Ä‚¢‚éB

–‰ß‹Ž‚̉uŠw’²¸‚ÅŒ’N‰e‹¿‚ªŽ¦´‚³‚ꂽ‚ªAŽÀŒ±Žº‚Å‚ÌŒ¤‹†i×–EŽÀŒ±A“®•¨ŽÀŒ±‚È‚Çj‚ł͉uŠw’²¸‚ÌŒ‹‰Ê‚ðŽxŽ‚·‚錋‰Ê‚Í“¾‚ç‚ê‚Ä‚¢‚È‚¢B

 

–‚µ‚©‚µA‰uŠwŒ¤‹†‚ÌŒ‹‰Ê‚ðŠ®‘S‚É–³Ž‹‚·‚邱‚Æ‚à‚Å‚«‚È‚¢B

–‚ˆ³‘—“dü‚©‚ç‚ÌŽ¥ŠE‚Ȃǂ𬂳‚­‚·‚é“w—Í‚ª•K—v‚Å‚ ‚éB

 

RAPID‚Ìì‹Æ•”‰ï•ñi“dŽ¥ŠE‚Í2B‚Ì”­ƒKƒ“«‚ ‚è‚Æ’ñ¥j‚ªŠ®¬Œã‚ɃAƒƒŠƒJŠe’n‚ÅŒö’®‰ï‚ðŠJµAFX‚Ȉӌ©‚ð•·‚¢‚½B

 

‚±‚ê‚ç‚ÌŒö’®‰ï‚ÌŒ‹‰Ê‚ÍA

“dŽ¥ŠE‚Ì”­ƒKƒ“«‚Æ‚µ‚ÄAKnowniŠù’mj‚Å‚àAProveniØ‹’‚¾‚Ä‚ç‚ꂽEŠm’肵‚½j‚Å‚àAProbablyi‚‚¢Šm“x‚ʼn”\«‚ª‚ ‚éj‚Å‚ ‚邱‚Æ‚àA”ے肳‚ꂽB

‚»‚µ‚ÄA“dŽ¥ŠE‚Ì”­ƒKƒ“‚Ƃ̈ö‰ÊŠÖŒWEŠÖ—^‚Í”rœ‚³‚êAu“dŽ¥ŠE‚Ì”­Šà«‚ÍPossiblei’á‚¢Šm“x‚ʼn”\«‚ª‚ ‚éj‚Å‚ ‚év‚Æ‚È‚Á‚½B

 

’FŒö’®‰ï‚ªŠJ³‚ꂽ‚±‚Æ‚Í’m‚Á‚Ä‚¢‚½‚ªA‚Ç‚¤‚¢‚¤˜_‹c‚ªs‚È‚í‚ꂽ‚Ì‚©’è‚©‚Å‚Í‚È‚©‚Á‚½‚ªA‚±‚̉ïˆõƒjƒ…[ƒX‚Å‚ÍA‚»‚ꂪ­‚µ–¾‚ç‚©‚É‚È‚Á‚Ä‚¢‚éB

 


•Åƒgƒbƒv‚É–ß‚é

---

 

‚R‚aD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@July/Aug 2000‚ÌŠT—v


¶‘Ì“dŽ¥‹CŠw‰ï‚a‚d‚l‚r‚̉ïˆõŒü‚¯‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡@2000‚ÌŠT—v‚ðЉ‚Ü‚·B

‚Pj“dŽ¥ŠE–hŒì‹KŠi‚Ì“®Œü@
”ñ“d—£•úŽËü–hŒìˆÏˆõ‰ï‚h‚b‚m‚h‚q‚o‚Ì“dŽ¥ŠE”˜˜IƒKƒCƒhƒ‰ƒCƒ“‚ɑ΂µ‚ÄAX‚ÉŒµ‚µ‚­–³ü“ƒ“™‚©‚ç‚Ì“dŽ¥ŠE•úŽË‚ð‹K§‚·‚é“®‚«‚ª‚ ‚éB@
—áG@ƒXƒCƒX‚ƃCƒ^ƒŠƒA‚Å‚ ‚éB
ˆê•ûA‚h‚b‚m‚h‚q‚o‚̃KƒCƒhƒ‰ƒCƒ“‚ð‚»‚Ì‚Ü‚ÜŽó‚¯“ü‚ê‚é‘A—Ⴆ‚Î@ƒjƒ…[ƒW[ƒ‰ƒ“ƒh‚ª‚ ‚éB

‚Qj’áŽü”gŽ¥ŠE‚ƬŽ™ƒKƒ“‚̃v[ƒ‹‰ðÍ@
ƒJƒƒŠƒ“ƒXƒJ‚Ì‚lD‚e‚…‚™‚ƒ‚ˆ‚”‚‰‚Ž‚‡“™‚ÍAÅV‚Ì9Œ‚̉uŠw’²¸‚ð‚܂Ƃ߂ĉðÍ‚ðs‚Á‚½B@
Œ‹‰Ê‚ÍA‚OD‚Sƒ}ƒCƒNƒƒeƒXƒ‰i‚Sƒ~ƒŠƒKƒEƒXjˆÈ‰º‚ÌŽ¥ŠE‚É”˜˜I‚µ‚Ä‚àA¬Ž™ƒKƒ“‚̊댯«‚Í‘‰Á‚µ‚È‚¢‚±‚Æ‚ª”»‚Á‚½B@

‚±‚Ì‚OD‚Sƒ}ƒCƒNƒƒeƒXƒ‰‚ð’´‚¦‚鎥ŠE”˜˜I‚ðŽó‚¯Š„‡‚Í‘S‘Ì‚Ì‚OD‚W“‚ɉ߂¬‚È‚¢B@]‚Á‚ÄA‘—“dü‚ª‚ ‚Á‚Ä‚à‚X‚XD‚Q“‚ÌŽq‹Ÿ‚ɂ͊댯«‚Í‚È‚¢B@

i‹t‚É‚¢‚¦‚ÎA‚OD‚W“‚ÌŽq‹Ÿ‚Í‚OD‚Sƒ}ƒCƒNƒƒeƒXƒ‰‚ð’´‚¦‚Ä‚¢‚é‚Ì‚ÅAŠëŒ¯‚Å‚ ‚é‚Æ‚¢‚¤‚±‚Æ‚ÍA‚±‚̉ï•ñ‚Å‚Íq‚ׂç‚ê‚Ä‚¢‚È‚¢B‚±‚ÌŒ¤‹†‚ÍBritish Journal of Cancer‚É”­•\‚µ‚Ä‚¢‚é‚Ì‚ÅA‚±‚ÌŒ´’˜‚ð“Ç‚Þ•K—v‚ª‚ ‚éBj@

‚Rj‰p‘‚Ì“®‚«@
‰p‘‚Å‚Í50‚g‚š“™‚Ì’áŽü”g“dŽ¥ŠE‚̃Œƒrƒ…[‚ðs‚Á‚½B@
Œ‹‰Ê‚ÍA‚±‚ê‚ç‚Ì“dŽ¥ŠE‚ÍAŒŸo‚Å‚«‚é‚©‚Å‚«‚È‚¢‚©‚Ì£ŒËÛ‚É‚ ‚é’ö“x‚̬‚³‚¢Œ’N‰e‹¿‚ª‚ ‚é‰Â”\«‚ª‚ ‚éB@

Œ»Žž“_‚Å‚Í‚Ç‚¤‚¢‚¤ƒƒJƒjƒYƒ€‚Å‚»‚¤‚µ‚½Œ’N‰e‹¿‚ª‚ ‚é‚Ì‚©”»‚Á‚Ä‚¢‚È‚¢B@
Œg‘Ñ“d˜b“™‚Ì‚Žü”g‚Ì“dŽ¥ŠE‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚錤‹†‚Æ‚Æ‚à‚ÉAŒ¤‹†‚𑱂¯‚é•K—v‚ª‚ ‚éB@

‚Sj‘Û“I‚É“dŽ¥ŠE”˜˜IŠî€‚ð“ˆê‚·‚é“®‚«‚ª‚ ‚éB@
‚v‚g‚n‚ð’†S‚É“®‚«‚ªŽn‚Ü‚Á‚Ä‚¢‚éB@

•Åƒgƒbƒv‚É–ß‚é

---

 

‚R‚bD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚r‚…‚‚”^‚n‚ƒ‚”@2000‚ÌŠT—v


BEMS‚̉ïˆõƒjƒ…[ƒX‚ÅA‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B
‚PDƒAƒƒŠƒJ‚Ì“dŽ¥ŠE‚̶‘̉e‹¿‚ÉŠÖ‚·‚錤‹†ŽÒ‚c‚’D‚o‚‚Œ‚‹‚ªŽ€–S‚µ‚½B@
‚QD‘ÛƒKƒ“Œ¤‹†‹@ŠÖi‚h‚`‚q‚bj‚Ì“®Œü
@‚h‚`‚q‚b‚Í2001”N6ŒŽ‚É‚c‚b‚©‚ç‚d‚k‚e‚Ì“dŽ¥ŠE‚ÉŠÖ‚·‚é”­ƒKƒ“«‚Ì•]‰¿‚ðs‚¤B
@‚±‚Ì•]‰¿‚ÌŒ‹‰Ê‚Í‘½•ª@2002”N1ŒŽ‚É‚h‚`‚q‚b‚©‚犧s•¨‚Æ‚µ‚Ä”­s‚·‚éB

@iƒAƒƒŠƒJ‚Ì‚q‚`‚o‚h‚c‚Ì•ñ‚©‚çA¡“x‚Í‘Û“I‚È‹@ŠÖ‚ª•]‰¿‚ðs‚¤‚±‚Æ‚É‚È‚è‚Ü‚µ‚½B‚Ç‚¤‚È‚é‚©Šy‚µ‚Ý‚Å‚·Bj
@ˆÈã@

•Åƒgƒbƒv‚É–ß‚é

---

‚SD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Nov/Dec@‚Q‚O‚O‚O‚ÌŠT—v


 ‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B

‚Pj‚h‚d‚d‚d‚Æ‚h‚b‚m‚h‚q‚o‚̘AŒg
¡Œã@‚±‚Ì2’c‘Ì‚Í‹¤“¯ƒ[ƒNƒVƒ‡ƒbƒv‚ðŠJ·‚é‚È‚Ç‚ÅA“dŽ¥ŠE‚Ì”˜˜I‚ÉŠÖ‚µ‚ĘAŒg‚ð[‚ß‚Ä‚¢‚­‚±‚ƂɇˆÓ‚µ‚½B
‚h‚d‚d‚d‚̓AƒƒŠƒJ‚Ì‹KŠi§’è’c‘Ì‚Å‚·B‚h‚b‚m‚h‚q‚o‚Í”ñ“d—£•úŽËü–hŒìˆÏˆõ‰ï‚Å‚v‚g‚n“™‚Æ‹¦’²ŠÖŒW‚É‚ ‚Á‚ÄA“dŽ¥ŠEi“dŽ¥”gj‚Ì”˜˜IŠî€‚È‚Ç‚ð’ñˆÄ‚µ‚Ä‚¢‚Ü‚·B
‚±‚Ì‚Q’c‘Ì‚ª‹¦’²‚·‚ê‚ÎA‘Û“I‚È“dŽ¥”g”˜˜I‹K’è‚ÌŒˆ’è‚É‘å‚«‚ȉe‹¿—Í‚ð‚à‚‚悤‚É‚È‚é‚Å‚µ‚傤B

‚Qj‚d‚t‚Ì“®‚«@
‰ÈŠw‚ƃŠƒXƒN‚ÉŠÖ‚·‚éƒRƒ“ƒtƒ@ƒŒƒ“ƒX‚ðŠJµ‚½B‚»‚ÌŠT—v‚Í‚v‚d‚a‚ÅŒöŠJ@
http://www.jrc.es/sci-gov/sumcon.html


 
‰ÈŠw‚ƃŠƒXƒN‚ÉŠÖ‚µ‚Ä‚Í3‚‚̉ۑ肪‚ ‚éA‚PjH—¿‚̈À‘S«@‚Qjˆâ“`Žq@‚RjŒg‘Ñ“d˜b‚©‚ç‚Ì“dŽ¥”g@‚Å‚ ‚éB

‚Sj‚v‚g‚n‚Ì‘Û‚d‚l‚eƒvƒƒWƒFƒNƒg‚ÍŠe‘‚Ì“dŽ¥ŠE‹K§ó‹µ‚𒲸@
–ƒhƒCƒc@“dŽ¥ŠE”˜˜I‹K’è‚ð2001”N6ŒŽ‚܂łɉü³‚·‚éB@
  50Hz
‚ÌŽ¥ŠE‚ÉŠÖ‚µ‚Ä‚ÍŠwZ‚È‚Ç‚Ì’nˆæ‚ɑ΂µ‚Ä‚Íu—\–h‘[’uv‚ð‘I‘ðB‚Ç‚±‚Ü‚ÅŒµ‚µ‚­‚·‚é‚©‚Í•s–¾‚Å‚·B
–ƒtƒBƒ“ƒ‰ƒ“ƒh‚Å‚ÍICNIRP‚̃KƒCƒhƒ‰ƒCƒ“‚ðŠî–{‚Æ‚·‚éB
–ƒXƒEƒF[ƒfƒ“‚Å‚ÍICNIRP‚ÆEU‚Ì‹K’è‚ðŽó‚¯“ü‚ê‚é‚©‚à’m‚ê‚È‚¢B@
–ƒƒVƒA@‘Û“I‚È‹K’è‚Ö‚Ì’²˜a‚̃eƒ“ƒ|‚ª’x‚¢B@

‚TjƒXƒEƒF[ƒfƒ“‚Å“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚é’²¸Œ‹‰Ê‚ð“Z‚ß‚½B@
–ƒXƒEƒF[ƒfƒ“Œê‚Å‘‚©‚ê‚Ä‚¢‚éB6ƒy[ƒW‚̉p•¶—v–ñ‚à‚ ‚éB@
–“dŽ¥”g‰ß•qÇ‚Í“dŽ¥ŠE‚ªŠÖ˜A‚µ‚Ä‚¢‚é‚Æ‚¢‚¤l‚¦‚ðŽxŽ‚·‚é‰ÈŠw“I‚ÈŒ¤‹†‚Í‚È‚©‚Á‚½B@

–‚h‚b‚m‚h‚q‚o‚â‚d‚t‚ª‹K’肵‚Ä‚¢‚é“dŽ¥ŠE”˜˜I‹K’è‚ð‚æ‚茵‚µ‚­‰ü³‚·‚é•K—v‚Å‚ ‚é‚Æ‚¢‚¤‰ÈŠw“I‚ȃTƒ|[ƒg‚Í•s‘«i‚k‚‚ƒ‚‹j‚µ‚Ä‚¢‚éB
–Œ¤‹†ŽÒ‚ÍŒg‘Ñ“d˜b‚ªŒ’N‚ɉe‹¿‚ð—^‚¦‚é‚Æ‚¢‚¤ŠmØ‚ðŒ©o‚¹‚È‚©‚Á‚½B@

•Åƒgƒbƒv‚É–ß‚é

---

 

‚TD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚‚Ž^‚e‚…‚‚ ‚Q‚O‚O‚P‚ÌŠT—v

@@@@@@@@@@@@@ì¬F@‚Q‚O‚O‚P\‚W|‚W@
“Á‹LŽ–€‚È‚µ

•Åƒgƒbƒv‚É–ß‚é

---

‚UD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚’‚ƒ‚ˆ^‚`‚‚’‚‰‚Œ@‚Q‚O‚O‚P‚ÌŠT—v

@@@@@@@@@@@@@ì¬F@‚Q‚O‚O‚P\‚U|‚Q‚T@
BEMS‚̉ïˆõƒjƒ…[ƒX‚Å‚©‚ç‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B

‚PDƒƒVƒA‚̃Zƒ“ƒgƒyƒeƒ‹ƒXƒuƒ‹ƒO‚Å
2000”N10ŒŽ‚ÉŠJ³‚ꂽ‘Û“dŽ¥”gƒ[ƒNƒVƒ‡ƒbƒvu‰‰W‚o‚’‚‚ƒ‚…‚…‚„‚‰‚Ž‚‡‚ªŠ®¬‚µ‚½B@ƒXƒEƒF[ƒfƒ“‚Ì‚m‚h‚v‚k‚Ì‚v‚d‚a‚ÅŒöŠJ‚µ‚Ä‚ ‚éB@‚t‚q‚k‚Íhttp://www.niwl.se/arb/2001.htm

‚QDEU‚Å‚ÍŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ÌŒ’N‰e‹¿Œ¤‹†‚ð„iB

‚RDƒCƒMƒŠƒX‚Ì
NRPB‚Í@3ŒŽ6“úu’áŽü”g“dŽ¥ŠE‚Ì”­Šàv‚ÉŠÖ‚·‚éê–å‰ÆƒOƒ‹[ƒv‚Ì•ñ‘‚ðŒö•\‚µ‚½B
@uŽÀŒ±Žº‚Å‚ÌŒ¤‹†‚ÍA‰uŠwŒ¤‹†‚Å“¾‚ç‚ê‚é’áŽü”g“dŽ¥ŠE‚ª”­Šà«‚ðŽ‚Á‚Ä‚¢‚é‚Æ‚¢‚¤‚±‚Ƃ𖾊m‚ÉŽwŽ¦‚µ‚Ä‚Í‚¢‚È‚¢B‚µ‚©‚µA‰uŠw’²¸‚ŬŽ™Šà‚Ì‘‰Á‚̬‚³‚¢ƒŠƒXƒN‚É‚È‚Á‚Ä‚¢‚éB

@‘ål‚ÌŠà‚ÉŠÖ‚·‚é‰uŠw’²¸A“®•¨ŽÀŒ±‚â×–EŽÀŒ±“™‚É‚æ‚Á‚Ä–¾Šm‚ÈŠmØ‚ª“¾‚ç‚ê‚Ä‚¢‚È‚¢‚Ì‚ÅA‰uŠwŒ¤‹†Œ‹‰Ê‚ÅŒ‹˜_‚ðo‚·‚É‚Í•s\•ª‚Å‚ ‚éB¡Œã‚ÌŒ¤‹†‚É‚æ‚Á‚ÄA¡‚܂ł̬‰Ê‚ª‹ô‘R‚≽‚©‚Ì—vˆö‚Å‹N‚±‚Á‚½‚±‚Æ‚Å‚ ‚é‚Æ”»‚Á‚Ä‚àA’·Šú‚Ì–\˜I‚ª¬Ž™Šà‚̃ŠƒXƒN‘‘å‚̉”\«‚ÍŽc‚éBv

•ñ‘‚ÌuŒ‹˜_‚Æ¡Œã‚̉ۑèv‚Ì•”•ª‚Í
NRPB‚ÌWEB‚ÅŒöŠJB@URL‚Í@http://www.nrpb.org.uk/

‚SDƒoƒ`ƒJƒ“ƒ‰ƒWƒI•ú‘—‚Ì“dŽ¥ŠE–â‘è‚ÌŠT—v
@ŠT—v‚ªÐ‰î‚³‚ê‚Ä‚¢‚Ü‚·B@ˆÈ‰º‚Í‚»‚ÌŠT—v‚ÌŠT—v‚Å‚·B

–ƒ[ƒ}‚Ì–k‚R‚O‚‹‚‚ÌŠ‚Ƀoƒ`ƒJƒ“ƒ‰ƒWƒI•ú‘—‚Ì•ú‘—ƒ^ƒ[‚ª‚ ‚éB
@
29‚̃Aƒ“ƒeƒi‚ÅAFM•ú‘—2”gA’Z”g•ú‘—27”g‚ÅA‘S¢ŠE‚ÉŒü‚¯‚Ä•ú‘—‚ðs‚Á‚Ä‚¢‚éB
@‘—M“d—Í‚Í@
FM‚ªÅ‘å‚T‚O‚O‚j‚vA’Z”g‚ªÅ‘å‚U‚O‚O‚‹‚vB@
@‘—M‹Ç‚ÌŠO‰‚ÅA‘—M“d—ÍÅ‘å‚ÌŽž‚Ì“dŠE‹­“x‚Í‚P‚T|‚Q‚O‚u^‚‚Æ‚¢‚¤‘ª’茋‰ÊB

–ƒoƒ`ƒJƒ“•ú‘—‚ÍA‚h‚b‚m‚h‚q‚o‚̃KƒCƒhƒ‰ƒCƒ“‚ðŽó‚¯“ü‚ê‚鎖‚É‚µ‚Ä‚¢‚½B
–‚µ‚©‚µAƒCƒ^ƒŠƒA‚ª
1998”N‚h‚b‚m‚h‚q‚o‚æ‚è’á‚¢“dŠE‚ÌÅ‘å’l‚U‚u^‚‚ð‹K’肵‚½B
–‚»‚µ‚ÄAƒoƒ`ƒJƒ“•ú‘—‚ƃCƒ^ƒŠƒA­•{‚Æ‚ÌŠÔ‚Å–â‘è‚Æ‚È‚Á‚½B
–‚»‚ÌŒãAƒƒfƒBƒA‚ª‚±‚Ì–â‘è‚ɉ΂ð‚‚¯‚½B

–‰uŠw’²¸‚ÌŒ‹‰Ê
‰ß‹Ž‚ÉŒü‚¤Œã‚ëŒü‚«‚̉uŠwŒ¤‹†‚ÅA‰ß‹Ž
14”NŠÔ‚ÌŠÔA‘—M“ƒ‚ÌŽüˆÍ‚P‚O‚j‚l‚ÉZ‚ÞŽq‹Ÿ‚ɂͬŽ™”’ŒŒ•a‚̃ŠƒXƒN‘‘å‚Í‚È‚©‚Á‚½B

‚µ‚©‚µA‹——£‚Æ‚Ì‘ŠŠÖ‚ªŒ©‚ç‚ꂽB
‚O|‚Q‚‹‚‚͈̔͂ł̓ŠƒXƒN‚Í–ñ‚UA@‚Q|‚S‚‹‚‚Å‚Í–ñ‚QA@‚S|‚U‚‹‚‚Å‚Í–ñ‚PD‚T‚Å‚ ‚Á‚½B
ƒŠƒXƒN‚ª
6‚Æ‚È‚Á‚½‚O|‚Q‚‹‚‚Å‚ÍǗᔂ͋͂©‚PiŠú‘Ò’l‚Í0.16j,
ƒŠƒXƒN‚ª2‚Æ‚È‚Á‚½‚Q|‚S‚‹‚‚Å‚ÍǗᔂ͂QA@‚S|‚U‚j‚‚Å‚ÍǗᔂª‚T‚Å‚ ‚Á‚½B
‚U|‚P‚O‚‹‚‚Ì’n“_‚Å‚ÍÇ—á‚̓[ƒ‚Å‚ ‚Á‚½@iŠú‘Ò’l‚Í‚SjB
‘—M“ƒ‚©‚ç‚Ì‹——£‚Æ“dŠE‹­“x‚Æ‚Í‘ŠŠÖ‚ª‚Æ‚ê‚È‚©‚Á‚½B
iƒRƒƒ“ƒgFǗᔂª¬‚³‚¢j

¬Ž™”’ŒŒ•a‚ÍŽž‚Æ‚µ‚Ä’nˆæ“I‚É‚Ü‚½ŽžŠÔ“I‚ÉAW’†‚µ‚Ä”­¶‚·‚éB
‚S|‚U‚‹‚‚Å”­¶‚µ‚½‚TŒ‚ÌÇ—á‚Ì‚¤‚¿‚SŒ‚Í‚ ‚鬂³‚È‘º‚ÉW’†‚µ‚Ä‚¢‚½B

Žs–¯‚â’n•û­•{‚Ì—v‹‚Å“dŠE‹­“x‚𑪒肵‚½AÅ‘å‚Í‚P‚V‚u
/‚‚Å‚h‚b‚m‚h‚q‚o‚Ì„§’l‚ð’´‚¦‚Ä‚¢‚È‚©‚Á‚½B
‚SŒW’†”­¶‚µ‚½‘º‚Å‚Ì‚Q‚SŽžŠÔ‘ª’茋‰Ê‚Å‚ÍA“dŠE‹­“x‚ÌÅ‘å‚Í‚Q‚u
/‚‚Å‚ ‚Á‚½B

–ƒoƒ`ƒJƒ“•ú‘—‚Ío—Í‚ð‰º‚°‚é‚È‚Ç‚ðs‚¤‚Æ‚¢‚Á‚Ä‚¢‚邪A‚U‚u
/‚ˆÈ‰º‚ð…Žç‚Å‚«‚é‚©‚Í’è‚©‚Å‚Í‚È‚¢B

•Åƒgƒbƒv‚É–ß‚é

---

‚VD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚™^‚i‚•‚Ž‚…@‚Q‚O‚O‚P‚ÌŠT—v

@@@@@@@@@@@@@@ì¬F‚Q‚O‚O‚P\‚W|‚V@
BEMS‚̉ïˆõƒjƒ…[ƒX‚Å‚©‚ç‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B

‚PDƒIƒ‰ƒ“ƒ_‚Ì“dŽ¥”g•ñ
6ŒŽ‚ÉÅV‚Ì•ñ‘‚ð”­s‚µ‚½B
‘—“dü‚©‚ç‚ÌŽ¥ŠE‚âŒg‘Ñ“d˜b‚Ì’†Œp“ƒ‚©‚ç‚Ì“d”g‚ÍAŒ»Ý‚̉Ȋw“I‚È’mŒ©‚Å‚Í–â‘è‚Í‚È‚¢B
‰p•¶‚Ì•ñ‚ÍA
http://www.gr.nl/engels/publications/Reports/frameset.htm‚ÉŒöŠJ‚µ‚Ä‚ ‚éB

‚QD‘Û‚ª‚ñ‹¦‰ï
IARC‚Ì•ñ
IARC‚Í@’áŽü”g“dŽ¥ŠE‚Í”­Šà‚̉”\«‚ ‚è‚Æ‚ÌŒ‹˜_B
¬Ž™”’ŒŒ•a‚Æ
0.4ƒÊƒeƒXƒ‰ˆÈã‚ÌŽ¥ŠE‚Ƃ̉uŠw’²¸‚É‚æ‚éB
“¯Žž‚ÉA¬Ž™”]Žîᇂ₻‚Ì‘¼‚ÌŠà‚Æ‚ÍŠÖŒW‚·‚é‚Æ‚¢‚¤ŠmØ‚Í‚È‚µA
‘ål‚ÌŠà‚Æ‚àŠmØ‚È‚µA

•Åƒgƒbƒv‚É–ß‚é

---

‚WD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡@‚Q‚O‚O‚P‚ÌŠT—v

@@@@@@@@@@@@@@ì¬F ‚Q‚O‚O‚P\‚P‚O|‚S@
BEMS‚̉ïˆõƒjƒ…[ƒX‚Å‚©‚ç‹»–¡‚Ì‚ ‚éƒ|ƒCƒ“ƒg‚ðЉ‚Ü‚·B

‚PD‰p‘‚m‚q‚o‚a‚ÌV•ñ‘

Œg‘Ñ“d˜b‚Ì“dŽ¥ŠE‚ÌŒ’N‰e‹¿‚ȂǂɈø‚«‘±‚¢‚ÄAu‚s‚d‚s‚q‚`iTerrestrial@Trunked Radio ˜a–ó‚ÍH@—¤ãˆÚ“®–³ü‚Ì’†‚Å‹Æ–±—p‚Ì‚â‚âƒnƒCƒpƒ[‚È–³üHj‚©‚ç‚Ì“dŽ¥ŠE‚ÆŒ’N‰e‹¿‚ÌŠÖ‚·‚é•ñ‘‚ð“Z‚ß‚½B•ñ‘‚Í‚v‚d‚a‚ÅŒöŠJ‚³‚ê‚Ä‚¢‚éB

‚±‚Ì–³ü‚͈ê”Ê—p‚Æ‚ÍŒ¾‚¦‚¸A‹Æ–±—p‚ÅA‚h‚b‚m‚h‚q‚o‚Ì“dŽ¥ŠE–\˜IŠî€‚ÍE‹Æl‚ð‘ÎÛ‚Æ‚µ‚½‹K’肪“K—p‚³‚ê‚éB@‘—Mo—Í‚Í‚P‚v‚â‚R‚v‚ÅA‚h‚b‚m‚h‚q‚o‚Ì‹K’è‚ɂ͇’v‚µ‚Ä‚¢‚éB
‚µ‚©‚µA‘—Mo—Í‚ª‚P‚O‚v‚ÅA‘€ìŽÒ‚Ì“ª•”‚ªƒAƒ“ƒeƒi‚É‹ßÚ‚µ‚Ä‚¢‚ê‚ÎA–\˜IŠî€‚ð’´‚¦‚é‹°‚ꂪ‚ ‚éBŽg—p‚â¡Œã‚Ì‹@ŠíÝŒv‚É’ˆÓ‚ª•K—vB

‚QDƒhƒCƒc‚ÌŒg‘Ñ“d˜b‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚錤‹†
2005”N‚Ü‚Å‹Šz‚ð”ï‚₵‚ÄŒ¤‹†‚ðs‚¤B

‚RDƒmƒ‹ƒEƒF[ŠCŒR‚ÌŒ¤‹†

“dŽq‹@Ší‚â–³ü‹@Ší‚𑽗p‚µ‚½ŒRŠÍi‘å“d—͂̃Aƒ“ƒeƒi‚⃌[ƒ_‚È‚Ç‚à‘•”õj‚Éæ‘D‚µ‚ċΖ±‚µ‚Ä‚¢‚éŒRl‚Ö‚Ì“dŽ¥”g‚̉e‹¿‚ÉŠÖ‚·‚é’²¸Œ¤‹†‚ðs‚¤B‚±‚ÌŒ¤‹†‚ׂ̈ÉAŠCŒR‚ÍA“Æ—§‚µ‚½‘æ3ŽÒ‚𵂭‚±‚Æ‚É‚µ‚½B
1997”N‚Ì’²¸‚Å‚ÍAæ‘gˆõ‚ÌŽq‹Ÿ‚ª‰½‚ç‚©‚̈Ùí‚ð‚à‚Á‚Ķ‚܂ꂽŠ„‡‚ª85–¼’†14–¼‚Å‚ ‚Á‚½B


•Åƒgƒbƒv‚É–ß‚é

---

 

‚XD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚r‚…‚‚”^‚n‚ƒ‚”D‚Q‚O‚O‚P‚ÌŠT—v

‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚P”NSept/Oct†‚ª“Í‚«‚Ü‚µ‚½B‹C‚̂‚¢‚½“_‚ðЉ‚Ü‚·B

‚PBƒXƒEƒF[ƒfƒ“‚ÌŒ¤‹†ŽÒUlf BergqvistŽŽ€–SB

‚±‚Ì‚XŒŽ‚É‚È‚­‚È‚Á‚½‚»‚¤‚Å‚·BŽ€ˆö“™‚Í”»‚è‚Ü‚¹‚ñA‹LŽ–‚É‚ ‚è‚Ü‚¹‚ñB
Ž„‚ªi‰äX‚ªj’²¸’c‚ŃXƒgƒbƒNƒzƒ‹ƒ€‚És‚Á‚½Žž‚Ɉӌ©ŒðŠ·‚ðs‚Á‚½Œ¤‹†ŽÒ‚Å‚·B

‚QB ˆÓŒ©•\–¾‚Æ‚µ‚Ĉȉº‚Ì“à—e‚ªŒfÚB
ƒXƒEƒF[ƒfƒ“‚Ì‘ã•\“I‚ÈV•·‚É‚Q‚O‚O‚P”N‚XŒŽŒfÚ‚³‚ꂽ“à—e‚ðA‹–‰Â‚𓾂ē]ÚB
Opinion- Experts who talk rubbish 
‚½‚킲‚Æ‚ð˜b‚·Œ¤‹†ŽÒ
–––––––––––––––––––––––––––
@ˆãŠw‚ÌŒ¤‹†ŽÒ‚Í^ŽÀ‚ðAŒ¤‹†¬‰Ê‚ðŠ§s‚·‚鎩—R‚ðŽ‚ÂB”Þ‚ç‚͈Ó}‚ð‚à‚Á‚ă}ƒXƒƒfƒBƒA‚ɺ–¾‚ðo‚µ‚½‚è‚·‚邪AŒ¤‹†ƒe[ƒ}‚É•K‚¸‚µ‚àê–å‰Æ‚Å‚Í‚È‚¢ê‡‚ª‚ ‚éB@‚±‚¤‚µ‚½‚±‚Ƃ̓}ƒXƒƒfƒBƒA‚àŒöO‚à’ˆÓ‚·‚ׂ«‚Å‚ ‚éB

‘½‚­‚ÌŒ¤‹†ŽÒ‚Í‚Ü‚¶‚ß‚ÅAM—Š‚Å‚«AŒö•½‚Å‚ ‚éB@‚µ‚©‚µA‚ ‚錤‹†ŽÒ‚͈Ó}“I‚Ƀ}ƒXƒƒfƒBƒA‚Éî•ñ‚𗬂µ‚Ä‚¢‚éB@‚ ‚éꇂɃ}ƒXƒƒfƒBƒA‚ð‚½‚«‚‚¯‚ÄA‚æ‚葽‚­‚ÌŒ¤‹†Ž‘‹à‚ª“üŽè‚Å‚«‚é‚悤‚É‚½‚­‚ç‚ÞB

ƒ}ƒXƒƒfƒBƒA‚Ö‚Ìî•ñ’ñ‹Ÿ‚⺖¾”­•\‚ÉD‚Ü‚µ‚­‚È‚¢ƒP[ƒX‚ª‚ ‚éB
‚PB‚ ‚«‚ç‚©‚È‹U‚è
‚QB•sŠ®‘S‚ÈA‚à‚µ‚­‚͘_•¶‚Æ‚µ‚ÄŠ§s‚³‚ê‚Ä‚¢‚È‚¢Œ¤‹†¬‰Ê‚ÉŠî‚¢‚½‚èAFX‚ÈŒ¤‹†‚Ì’†‚©‚ç“Á’è‚̬‰Ê‚¾‚¯‚ð‘I‘ð‚µ‚½‚肵‚½º–¾
‚RBŒ¤‹†¬‰Ê‚ðŒÖ’£‚µ‚Äà–¾‚·‚éB
‚SBŽ©•ª‚Ìê–å—̈æˆÈŠO‚Ì•ª–ì‚Å‚Ìê–å‰Æ‚ÌU‚è‚ð‚µ‚½„‘ª

—Ⴆ‚΂P‚̃P[ƒX‚Å‚ÍAƒXƒEƒF[ƒfƒ“‚Ì‚ ‚éŠà‚ÌŒ¤‹†ŽÒ‚ÍAŠà‚ÌŒ¤‹†‚ð‚Å‚Á‚¿ã‚°‚½‚Æ‚µ‚ÄŠw‰ï‚©‚ç’Ç•ú‚³‚ꂽA

‚Q‚̃P[ƒXF@‚ ‚錤‹†ŽÒ‚Í‚m‚l‚sŒg‘Ñ“d˜b‚ª”]Žîᇂð‹N‚±‚·‚ÆŒ¾‚¤Œ¤‹†‚ðƒ}ƒXƒƒfƒBƒA‚ÉŒ¤‹†¬‰Ê‚𗬂µ‚½B‚±‚ÌŒ¤‹†‚Í‚Ü‚¾˜_•¶‚Æ‚µ‚ÄŠ§s‚³‚ê‚Ä‚¢‚È‚¢B@]‚Á‚ÄA‚±‚ÌŒ¤‹†‚ª³‚µ‚¢‚Ì‚©’N‚àŒŸØ‚Å‚«‚È‚¢B

‚R‚̃P[ƒXF@Œg‘Ñ“d˜b‚ª”]Žîᇂð‹N‚±‚·‚ÆŒ¾‚¤Œ¤‹†¬‰Ê‚ð”­•\‚µ‚½B@‚±‚ÌŒ¤‹†‚ͬ‹K–Í‚È—\”õ“I‚ÈŒ¤‹†‚Å‚ ‚èAŒ¤‹†‘S‘Ì‚ð‚Ý‚ê‚Α傫‚ȃŠƒXƒN‚Å‚Í‚È‚¢‚±‚Æ‚ª‚í‚©‚éB
‚±‚Ì”­Œ©‚͎Ⴕ‚©‚µ‚ÄA‹ô‘R‚ÌŒ‹‰Ê‚©‚à’m‚ê‚È‚¢‚Ì‚ÉAŒ¤‹†ŽÒ‚ÍŒg‘Ñ“d˜b‚ðŽg—p‚µ‚Ä‚¢‚½”]‚Ì‘¤‚É”]Žîᇂª”­¶‚·‚é‚Æq‚ׂĂ¢‚éB

‹^‹`‚Ì‚ ‚錤‹†ŽÒ‚Í“xXƒ}ƒXƒ}ƒƒfƒBƒA‚É“oꂵAŒg‘Ñ“d˜b‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚éŒx‚ðA‚½‚킲‚Æ‚ðq‚ׂ邱‚Æ‚ª‘½‚¢B —\”õ“I‚ÈŒ¤‹†‚ÉŠî‚¢‚ă}ƒXƒƒfƒBƒA‚Ř_‹c‚ðs‚¤‚±‚Ƃͳ‚µ‚­‚È‚¢B‚±‚ê‚ç‚ÍAŒ¤‹†‚Ì‘S—e‚ª–¾Šm‚É‚È‚Á‚Ä‚©‚ç˜_‹c‚·‚ׂ«‚Å‚ ‚éB

‚S‚̃P[ƒX‚Å‚ÍA‚ ‚錤‹†ŽÒ‚̓XƒEƒF[ƒfƒ“‚Ì‘ã•\“I‚ÈV•·‚ÉA‹¶‹•a‚ÍŒg‘Ñ“d˜b‚ÌŽg—p‚ªŒ´ˆö‚¾‚ÆA”­•\‚µ‚Ä‚¢‚éB”Þ‚Í‚»‚Ì“¹‚Ìê–å‰Æ‚Å‚Í‚È‚¢B

‚ ‚éƒXƒEƒF[ƒfƒ“‚̉ȊwŽÒ‚͈ê˜A‚ÌŒx‚ð”­•\‚µ‚½BlHŠÃ–¡—¿‚ÌAspartame‚Í”­Šà«‚ð‚à‚ÂAŒg‘Ñ“d˜b‚Í”]Žîᇂ̌´ˆöA•ê“û‚ÉŠÜ‚Ü‚ê‚é“Å‘f‚ª“ûŽ™‚ðŠà‚É‚·‚éAƒAƒ‹ƒR[ƒ‹‚ªŠà‚ÌŽå—v‚ÈŒ´ˆö‚Å‚ ‚éA“™‚ÆB

ŒöO‚âƒ}ƒXƒƒfƒBƒA‚Éî•ñ‚𗬂·Ž–‚ÉŠÖ‚µ‚ÄA‚»‚ê‚炪³‚µ‚¢‚±‚Æ‚Å‚ ‚é‚Æ‚¢‚¤‚±‚Æ‚ðŠm”F‚·‚éŽè’i‚ðŠJ”­‚µ‚È‚¯‚ê‚΂Ȃç‚È‚¢B

¡‚̓Cƒ“ƒ^[ƒlƒbƒg‚ÌŽž‘ã‚ÅAFX‚Èî•ñ‚ª‚v‚d‚a‚Å“üŽè‚Å‚«‚éB’N‚©‹^‹`‚ ‚麖¾‚ðŒ©‚½Žž‚ÍA‚v‚d‚a‚𒲂ׂÄAŒ¤‹†ŽÒ‚ª–{“–‚É‚»‚Ì“¹‚ÌŒ¤‹†ŽÒ‚Å‚ ‚é‚©‚Ç‚¤‚©‚Í’²‚ׂ邱‚Æ‚ª‚Å‚«‚éB
––––––––––––––––––––––
‚Æ‚¢‚¤“à—e‚Å‚·B@‚¿‚å‚Á‚Ɠ‚¢‰p•¶‚ÅA‘½­ˆÓ–󂵂½Š‚à‚ ‚è‚Ü‚·B

•Åƒgƒbƒv‚É–ß‚é

---

‚P‚OD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚m‚‚–^‚c‚…‚ƒ@‚Q‚O‚O‚P‚ÌŠT—v

‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚P”NNov/Dec†‚ª“Í‚«‚Ü‚µ‚½B‹C‚̂‚¢‚½“_‚ðЉ‚Ü‚·B

‚PD‰p‘NRPB‚Ì•ñ
2001
”N11ŒŽ8“ú‚ÉAu“d—ÍŽü”g”‚Ì“dŽ¥ŠE‚̓Aƒ‹ƒcƒnƒCƒ}[•a‚Æ‚Ì@–¾”’‚ÈŠmØ‚Í‚¦‚ç‚ê‚È‚©‚Á‚½B’A‚µAŒ¤‹†‚·‚ׂ«‰Û‘è‚ÍŽc‚Á‚Ä‚¢‚é‚Æv‚Æ‚¢‚¤•ñ‚ðo‚µ‚½B

‚QD“dŽ¥ŠE‚ÉŠÖ‚·‚鉢B‹c‰ï•ñ‚ÉŠÖ‚·‚锽˜_
ICNIRP
AEBEAi‰¢B‚̶‘Ì“dŽ¥‹CŠw‰ïjACOST281i‰¢B‚Ì“dŽ¥”g‚ÉŠÖ‚·‚鋤“¯Œ¤ƒvƒƒWƒFƒNƒgj‚Í‹¤“¯‚Å”½˜_‚ðo‚µ‚½B@‚»‚Ì”½˜_‚ÍWEB‚ÅŒöŠJBHttp;//www.cost281.org

‚RDƒJƒŠƒtƒHƒ‹ƒjƒAEMFƒŠƒXƒN•]‰¿
1993
”N‚ɃJƒŠƒtƒHƒ‹ƒjƒAB–@‚ÅŽn‚Ü‚Á‚½ƒvƒƒWƒFƒNƒgBŽ–âˆÏˆõ‰ï‚Ì’·‚͉uŠwŽÒ‚Å‚ ‚éB
2002
”N1ŒŽ‚ÉFinal@Draft‚̃Œƒrƒ…[‚ðs‚¤B

Œ»Žž“_‚Å‚ÌFinal@Draft‚ÍWEB‚ÅŒöŠJ‚µ‚Ä‚¢‚éB@http://www.dnai.com/~EMF/research.html
ƒJƒŠƒtƒHƒ‹ƒjƒABŒú¶È‚Í2002”N2ŒŽ‚Ɉê‚‚̌ł܂Á‚½ÅI•ñ‚ðo‚·—\’è‚ÅA‚»‚ê‚Í‘½”ˆÓŒ©‚É‚à‚æ‚炸A­”ˆÓŒ©‚É‚à‚æ‚ç‚È‚¢‚à‚Ì‚Æ‚È‚éB

‚SD‰p‘‚ÅŒg‘Ñ“d˜b‚©‚ç‚Ì“dŽ¥”g‚ÌŒ¤‹†@
7
•S–œƒ|ƒ“ƒh‚ÌŠî‹à‚ÅŒ¤‹†A­•{‚Æ’ÊM‹@‹ÆŠE‚ªÜ”¼B

‚TDƒAƒƒŠƒJ‚Ì“ÁŽêƒŒ[ƒ_iPave Paws, ƒtƒF[ƒYƒAƒŒƒC‚ð—˜—p‚µ‚½ƒAƒ“ƒeƒi‚ð‰ñ“]‚³‚¹‚È‚¢ƒŒ[ƒ_A10ŠK‚Ù‚Ç‚Ì‚‚³‚ÉŒš‘¢•¨j‚É‚æ‚éZ–¯‚ÌŒ’N‰e‹¿‚𒲸‚·‚邱‚Æ‚É‚È‚Á‚½B

‚UD’áŽü”g“dŽ¥ŠE‚̃y[ƒXƒ[ƒJ‚ւ̉e‹¿
“ñ‚‚̌¤‹†‚Å–â‘肪‚È‚¢‚Æ‚Í‚¢‚¦‚È‚©‚Á‚½B
ƒhƒCƒc‚ÌŒ¤‹†‚Å‚ÍA50Hz‚Ì“dŠE‚ª‰e‹¿Aƒtƒ‰ƒ“ƒXŒ¤‹†‚Å‚Í“d—ÍŽü”g”‚ÌŽ¥ŠE‚ÅŒ¤‹†‚ðs‚Á‚½B

‚VDƒpƒ‹ƒX«“dŽ¥ŠE‚ÉŒ’N‰e‹¿‚ÉŠÖ‚·‚é‘Ûƒ[ƒNƒVƒ‡ƒbƒv‚ª2001”N12ŒŽ‚ɃhƒCƒc‚ÅŠJ³‚ꂽB

•Åƒgƒbƒv‚É–ß‚é

---

 

‚P‚PD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚‚Ž^‚e‚…‚‚‚Q‚O‚O‚Q‚ÌŠT—v
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚Q”NJan/Feb†‚ª“Í‚«‚Ü‚µ‚½B‹C‚̂‚¢‚½“_‚ðЉ‚Ü‚·B

1.      ‰ïˆõ‚ÌŒ¤‹†‚ÌЉî@
F. Prato
‚ç‚ÌŒ¤‹†‚ÅAuShielding, but not zeroing of the ambient field reduce stress induced analgesia in miceBv@ŠÂ‹«“dŽ¥ŠE‚ðƒ[ƒ‚Å‚Í‚È‚­AŒ¸‚ç‚·‚ÆAƒ‰ƒbƒg‚̃XƒgƒŒƒX‚É‚æ‚Á‚Ä—U‹N‚³‚ê‚é’ÉŠoŒ‡”@‚ªŒ¸‚é@‚Æ‚¢‚¤Œ¤‹†‚ª‚ ‚éB WEB‚ÉŒöŠJAwww.pubs.royalsoc.ac.uk

2.      ƒI[ƒXƒgƒ‰ƒŠƒAEƒjƒ…[ƒW[ƒ‰ƒ“ƒh‚Ì“®Œü
–kƒVƒhƒj[‚É‚¨‚¯‚é–³ü“ƒ‚ÌŽü•Ó‚É‚¨‚¯‚é‰uŠwŒ¤‹†‚È‚ÇA·‚ñ‚É‹c˜_‚ªs‚í‚ê‚Ä‚¢‚éB

ƒjƒ…[ƒW[ƒ‰ƒ“ƒh‚ł̊‹«Ù”»‚ÌŒ‹‰ÊAƒNƒŠƒXƒgƒ`ƒƒ[ƒ`Žs“–‹Ç‚ÍA¬ŠwZ‚ׂ̗ɌšÝ—\’è‚ÌŒg‘Ñ“d˜b‚Ì“d”g“ƒ‚ÌŒšÝ‚ÉŠÖ‚µ‚ÄA”½‘΂³‚ê‚Ä‚¢‚½‚ªAÙ”»‚Å‚ÍŸ‘iAŒšÝ‚³‚ê‚邱‚Æ‚É‚È‚Á‚½B ‚±‚ÌÙ”»‚É‚Í‘½‚­‚Ìê–å‰Æ‚̈ӌ©‚ª’ño‚³‚êAŒ‹‰Ê‚Æ‚µ‚Ä‚ÍPseudo-Standardi‰¼‚Ì‹K’èA—\–h“I‚ÉŒµ‚µ‚­‹K§‚·‚é‚Æ‚¢‚¤ˆÄ‚Ì‚±‚ÆHj‚Í‘Þ‚¯‚ç‚ꂽB

3.      ƒIƒ‰ƒ“ƒ_‚Ìó‹µ@
ƒIƒ‰ƒ“ƒ_‚ÌHealth Council(Œ’NÈ?)‚ÍAŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚éÅV•ñ‚ð1ŒŽ‚É”­•\‚µ‚½B Œ»Ý‚̉Ȋw“I‚È’mŒ©‚©‚çAŒ’N‰e‹¿‚Í‚È‚¢‚ÆA‚Ü‚½BŽq‹Ÿ‚ÌŒg‘Ñ“d˜bŽg—p‚ð‹K§‚·‚é•K—v‚à‚È‚¢‚ÆB

4.      ƒhƒCƒc‚Ì‹KŠi§’è
’áŽü”gE‚Žü”g‚Ì“dŽ¥ŠE”˜˜I‚ÉŠÖ‚µ‚ÄAŒ¤‹†‚Æ‹KŠiÝ’è‚ÉŠÖ‚·‚é‰ï‹c‚ªŠJ³‚ꂽB Œ»Ý—LŒø‚È‹K’è‚ð•ÏX‚·‚é•K—v‚Í‚È‚¢‚ÆA‚È‚Á‚½B ¬Ž™Šà‚Æ’áŽü”gŽ¥ŠE‚̉uŠwŒ¤‹†‚ÍAŒ‹˜_‚ðo‚·‚É‚Í•s\•ª‚ÅAX‚Ȃ錤‹†‚ª•K—vB‚ÆB

‚TD—\–hŒ´‘¥
–ƒAƒƒŠƒJ­•{‚Íu—\–hŒ´‘¥v‚ðŽxŽ‚·‚éB ‚µ‚©‚µAu¢ŠE‚Å“ˆê“I‚È—\–hŒ´‘¥v‚É‚ÍŽ^¬‚µ‚È‚¢B
–ƒ[ƒƒŠƒXƒN‚Í‚ ‚肦‚È‚¢.
–—\–hŒ´‘¥‚ð‚â‚è‚·‚¬‚é‚ÆA‹Zp‚Ìi“W‚ª•s‰Â”\‚É‚È‚éB1850”N‚ðŽv‚¢o‚¹‚ÎAƒŠƒXƒN‚ªŠF–³‚Å‚ ‚邱‚Æ‚ª”»‚é‚܂ʼn½‚à‚µ‚È ‚¢‚Æ‚¢‚¤‚Ì‚Å‚ ‚ê‚ÎA¡‚Ì‹Zp‚Ìi•ài“d‹CA“à”R‹@ŠÖAˆã–ò•i‚È‚Çj‚Í‚È‚©‚Á‚½‚Å‚ ‚낤B

•Åƒgƒbƒv‚É–ß‚é

---


‚P‚QD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚’‚ƒ‚ˆ^‚`‚‚’‚‰‚Œ@‚Q‚O‚O‚Q‚ÌŠT—v

 

ì¬F  ‚Q‚O‚O‚Q[‚U|‚P@
BEMS
‰ïˆõƒjƒ…[ƒX2002”NMarch/April†‚ª“Í‚«‚Ü‚µ‚½B@‹C‚̂‚¢‚½“_‚ðЉ‚Ü‚·B

‚PDIARC‚Ì’áŽü”g“dŽ¥ŠEƒ‚ƒmƒOƒ‰ƒt@‘æ80Šª‚ª”­s‚³‚ꂽB
’áŽü”gŽ¥ŠE‚Ì”­‚ª‚ñ«2B”»’è
‚ÉŠÖ‚·‚郂ƒmƒOƒ‰ƒt‚ª”­s‚³‚ꂽB@‡Œv‚S‚Q‚Xƒy[ƒWB
ƒAƒƒŠƒJ‚Å‚Í50ƒhƒ‹‚Åw“ü‰Â”\B@

‚QDÅ‹ß‚Ì“dŽ¥”g‚Æ”DPˆÙí‚̉uŠwŒ¤‹†‚ɑ΂·‚é‰p‘Doll‚̃Rƒƒ“ƒg 
Epidemiology
@i‰uŠwj@1ŒŽ†‚É”­•\‚³‚ꂽLee‚ç‚ÌŒ¤‹†‚ÉŠÖ‚µ‚ÄA‰p‘NRPB‚̓Rƒƒ“ƒg‚ð”­•\‚µ‚½B
‚±‚̉uŠw’²¸‚ÍA3,400–¼‚ð‘ÎÛ‚Æ‚µ‚½Œ¤‹†BTWAiŽžŠÔ‚Åd‚Ý•t‚¯‚ðs‚Á‚½”˜˜I•½‹Ï’lj‚Å‚ÍA”DP‚ւ̉e‹¿‚Í‚Ý‚ç‚ê‚È‚©‚Á‚½‚ªAő厥ŠE”˜˜I‚ðŽw•W‚Æ‚·‚ê‚ÎA16ƒ~ƒŠƒKƒEƒX‚æ‚è‘å‚«‚¢uŠÔ“I‚Èő唘˜I‚ðŽó‚¯‚½l‚Å‚ÍA‚·‚ׂĂ̗¬ŽY‚ÉŠÖ‚µ‚Ä‚ÍAƒŠƒXƒN‚Í1.8”{i CI 1.2-2.7j‚Å—LˆÓ‚ȉe‹¿‚ªŒ©‚ç‚ꂽ@‚Æ‚¢‚¤•ñ‚Å‚ ‚éB@

’F@Ž„‚Í‚Ü‚¾‚±‚ÌŒ´’˜‚ð“Ç‚ñ‚Å‚¢‚È‚¢B

‚±‚ÌŒ¤‹†‚Å‚ÍAŽQ‰Á—¦‚ª’á‚¢B Ç—á‚ł͌Ăт©‚¯‚ɑ΂µ‚Ä51%‚ªŒ¤‹†‚ɉž‘ø‚µA‘ÎÆ‚Å‚Í55%‚ª‰ž‘ø‚µ‚Ä‚¢‚é‚ɉ߂¬‚¸AƒZƒŒƒNƒVƒ‡ƒ“ƒoƒCƒAƒX‚ª”rœ‚³‚ê‚Ä‚¢‚È‚¢B@Ç—á‚Å‚ÍA‰ž‘ø‚µ‚½l‚Ì16.1%‚Í‚ƒƒCƒ„ƒR[ƒh‚ÉZ‚ÝA‹¦—Í‚µ‚È‚©‚Á‚½l‚Ì7.3%‚Í‚ƒƒCƒ„ƒR[ƒh‚ÉZ‚ñ‚Å‚¢‚½B@‘ÎÆ‚Å‚ÍA13.2%‚Æ11.7%‚Æ‘å·‚Í‚È‚©‚Á‚½B@

‚±‚ÌŒ¤‹†‚ÍAƒRƒz[ƒgŒ¤‹†‚ÅATWA‚Æ”DP‚ðŒ¤‹†‚·‚ׂ­AŽ¥ŠE‚Ì”˜˜I’²¸‚È‚Ç‚ðs‚Á‚½B
TWA
‚Å‚ÌŽ¥ŠE”˜˜I‚Å‚ÍA3ƒ~ƒŠƒKƒEƒXˆÈ㔘˜I‚µ‚Ä‚¢‚½ê‡‚̃ŠƒXƒN‚Í1.2 (CI 0.7 – 2.2 )‚Å‚ ‚èA—LˆÓ‚ȉe‹¿‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B

‚µ‚©‚µA‚±‚̉uŠw’²¸Œ¤‹†ŽÒ‚ÍA‚±‚ê‚Å‚Í–Ê”’‚­‚È‚¢‚Æ‚µ‚ÄA“–‰‚ÌŒv‰æ‚É‚Í‚È‚¢‘¼‚Ì”˜˜IðŒ‚Æ‚ÌŠÖ˜A«‚ð’T‚èAő唘˜I’l‚Æ‚ÌŠÖ˜A‚ðŒ©o‚µ‚½B@‚±‚ÌŽè–@‚̓Rƒz[ƒgŒ¤‹†‚Æ‚µ‚Ăͳ‚µ‚¢Žè–@‚Æ‚Í‚¢‚¦‚È‚¢B

3
”Ô–Ú‚ÌŒ‡“_‚ÍAˆÙí”DP‚µ‚½Ç—á‚Ì”¼•ªˆÈオAˆÙí”DP‚ð‹N‚±‚µ‚Ä‚©‚玥ŠE”˜˜I—ʂ𑪒肵‚Ä‚¢‚é‚Ì‚ÅA³‚µ‚¢ƒRƒz[ƒgŒ¤‹†‚Å‚Í‚È‚¢AƒZƒŒƒNƒVƒ‡ƒ“ƒoƒCƒAƒX‚ª”rœ‚³‚ê‚È‚¢B 

‚RDIEEE‚Ì“®Œü
IEEE
‚Í0 – 3 kHz‚Ì“dŽ¥ŠE”˜˜I‚ÉŠÖ‚·‚é‹K’èiDraft Standard PC95.6j‚ð쬒†B ¡”N‚ÌÅIŽl”¼Šú‚É‚Í”­Œø‚³‚ê‚éB

’F‚±‚ê‚Ü‚Å‚ÌIEEE‚Ì“dŽ¥ŠE”˜˜I‹K’è‚Í‚R‚‹‚g‚š‚æ‚è‚‚¢Žü”g”‚ÉŒÀ’èB

‚SD IEEE‚ÆICES‚Ì“®‚«@l‘Ì”˜˜I‚ÉŠÖ‚·‚éˆÏˆõ‰ï‚Ì“®Œü
–”ñ”MŒø‰Ê‚Í‚Ü‚¾Šm—§‚³‚ꂽ‚Æ‚Í‚¢‚¦‚È‚¢A‹KŠi§’è‚̘_‹’‚Æ‚µ‚Ä‚Í•s\•ª‚ÅA”MŒø‰Ê‚ª‹K’è‚̘_‹’‚Æ‚È‚éB
–‚Žü”g—̈æ‚ÉŠÖ‚·‚锘˜I‹K’è‚Í‘Û“I‚É’²˜a‚ðŒv‚é‚ׂ«B
–E‹Æ“I‚È”˜˜I‚ƈê”ÊŒöO‚Ì”˜˜I‚̈ႢA•½‹Ï‚ƃs[ƒN‚ɑ΂·‚é‹K’è‚̈Ⴂ‚ÉŠÖ‚µ‚Ä‚ÍA‚±‚ê‚ç‚Í2’iŠK‚É•Ê‚¯‚é‚ׂ«‚©‚ÉŠÖ‚µ‚ÄAÄŒŸ“¢‚ðs‚¤B

‚TD‰p‘‚ÌŒg‘Ñ“d˜b’†Œp“ƒ‚©‚ç‚Ì“d”gŽÀ‘Ô’²¸Œ‹‰Ê
‰p‘‚Å‚Í’†Œp“ƒ‚ª‹ß‚­‚É‚ ‚é100‚ÌŠwZ‚ÅA“d”g‹­“x‚ÌŽÀ‘ª‚ðs‚Á‚½BŒ‹‰Ê‚ÍWEB‚Å‚àŒöŠJ‚³‚ê‚Ä‚¢‚éB
‚±‚Ì’²¸‚ðŽó‚¯‚ÄALondon‚ÌFinancial Times ‚ÍuŒg‘Ñ“d˜b’†Œp“ƒ‚©‚ç‚Ì“dŽ¥”g‚ÉŠÖ‚·‚é•sˆÀ‚͘a‚ç‚¢‚¾(Allayed)v‚Æ•ñ‚¶‚Ä‚¢‚éB


•Åƒgƒbƒv‚É–ß‚é

---


‚P‚RD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@May^Jun@‚Q‚O‚O‚Q‚ÌŠT—v

@BEMS‚̉ïˆõƒjƒ…[ƒXMay/June@2002†‚ª“Í‚«‚Ü‚µ‚½B

“à—e‚Í@
BEMS‚ÌV‰ï’·‚É“Œ‘å‚Ìã–ìÆ„‚³‚ñ‚ª‘Io‚³‚ê‚Ü‚µ‚½B@

‚»‚Ì‘¼‚Í“Á‹LŽ–€‚ª‚ ‚è‚Ü‚¹‚ñB@

•Åƒgƒbƒv‚É–ß‚é

---

 

‚P‚SD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡@‚Q‚O‚O‚Q‚ÌŠT—v@

‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚Q”NJuly/Aug†‚ª“Í‚«‚Ü‚µ‚½B@
@@ì¬F@‚Q‚O‚O‚Q|‚P‚Q|‚Q‚Q@@
“Á‹LŽ–€‚͈ȉº‚Ì“_‚Å‚·B

IEEE‚ª3kHzˆÈ‰º‚ÌŽü”g”‚ÉŠÖ‚·‚é–\˜IŠî€‚ð§’èB
¡‚Ü‚Å‚ÌIEEE‚Ì“dŽ¥ŠE–\˜IŠî€‚Í3kHzˆÈã‚ÌŽü”g”‚ª‘ÎÛ‚ÅA’áŽü”g‚Ì‹K’è‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B2002”N9ŒŽ‚ÉV‹K’肪³”F‚³‚ꂽB@‹K’è‚ÍC95.6‚Å‚±‚ê‚©‚çˆóü‚É“ü‚éB@

BEMS
‰ïˆõƒjƒ…[ƒX‚É‚Í‚»‚̈ꕔ‚ªŒfÚ‚³‚ê‚Ä‚¢‚éB@’áŽü”g‚Ì“dŠE‚Ì‹K’è‚ÌЉî‚Í‚È‚¢B
’áŽü”g‚ÌŽ¥ŠE‚Ì‹K’è‚ÌЉ‚ ‚èA‚»‚ê‚ðŒ©‚é‚ÆAICNIRP‚Æ”äŠr‚µ‚ÄAˆê”ÊŒöO‚ÌŽ¥ŠE–\˜IŒÀ“x’l‚ÍA0.5Hz‚©‚ç2Hz‚͈̔͂ł͂킸‚©‚ÉICNIRP‚æ‚茵‚µ‚¢‚ªA‚»‚Ì‘¼‚ÌŽü”g”‘шæ‚Å‚ÍICNIRP‚æ‚èŠÃ‚¢B@50Hz‚Å‚Í0.1mTiICNIRPj‚ɑ΂µ‚ÄA}‚©‚ç“Ç‚ÝŽæ‚é‚Æ0.9mTiIEEEj‚Æ‚È‚Á‚Ä‚¢‚éB@‚±‚ÌŽ¥ŠE–\˜I‚Ì}‚ðˆÈ‰º‚ÉŽ¦‚·B

@@@@@@@à–¾: image009

@@@@@@@@@ˆø—pF‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚©‚ç@
@@@@@@@@@@@@@@@@‚h‚b‚m‚h‚q‚o@public; ˆê”ÊŒöO@
                     ICNIEP workers;@E‹Æ“I‚È–\˜I@
                     IEEE public:@ˆê”ÊŒöO@
                     IEEE Contr.env:
@E‹Æ“I‚È–\˜I@

‚±‚±‚©‚ç‚Í•MŽÒ‚̃Rƒƒ“ƒgF@
0.4ƒÊƒeƒXƒ‰ˆÈã‚ŬŽ™Šà‚Ì‘”­‚Æ‚¢‚¤‚±‚Æ‚©‚ç‚h‚`‚q‚b‚Å‚Í”­‚ª‚ñ«‚Q‚a‚Æ‚¢‚¤”»’è‚ð‰º‚µ‚Ä‚¢‚éB@‚»‚¤‚µ‚½ó‹µ‚É‚ ‚è‚È‚ª‚çAV‚µ‚­ì¬‚³‚ꂽƒAƒƒŠƒJ‚̊łÍA‚h‚b‚m‚h‚q‚o‚Ì’l‚æ‚èŠÃ‚¢Ž¥ŠE–\˜IŒÀ“x’l‚É‹KŠi‚ª§’肳‚ê‚Ä‚¢‚éB@
‚±‚ê‚͉½‚ðˆÓ–¡‚·‚é‚©HH
‚OD‚SƒÊƒeƒXƒ‰‰]X‚Æ‚¢‚¤‰uŠw’²¸Œ‹‰Ê‚ÍA‚Ü‚¾‚±‚¤‚µ‚½–\˜IŠî€‚Ìô’è‚É”½‰f‚·‚é‚悤‚Èu‰ÈŠw“I‚È’mŒ©v‚É‚Í‚È‚Á‚Ä‚¢‚È‚¢‚ÆAŒ©‚ç‚ê‚Ä‚¢‚éA‚Æ‚¢‚¤‚±‚Æ‚à‚¢‚¦‚éB

–ƒXƒEƒF[ƒfƒ“‚ÌSSI‚ÅŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ÌŒ’N‰e‹¿‚ÉŠÖ‚·‚é•ñ‚ð‚Ü‚Æ‚ß‚½B
@Œ‹‰Ê‚ÍAŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ª”­ƒKƒ“‚̈öŽq‚É‚È‚é‚Æ‚¢‚¤Šm’肵‚½Ø‹’‚Í‚È‚¢B@

@•ñ‘‚ÍSSI‚ÌWEB‚ÅŒöŠJ‚³‚ê‚Ä‚¢‚éB

•Åƒgƒbƒv‚É–ß‚é

---

 

‚P‚TD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚r‚…‚‚”^‚n‚ƒ‚”@‚Q‚O‚O‚Q‚ÌŠT—v@

‚Q‚O‚O‚Q|‚P‚Q|‚Q‚P@
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚Q”NSept/Oct†‚ª“Í‚«‚Ü‚µ‚½B
‚a‚d‚l‚r‚Ì‘n—§‚Q‚T”N‹L”O‚Ȃǂ̉ï‚Ì‹LŽ–‚È‚Ç‚ª‚ ‚éB@“Á‹LŽ–€‚Í‚È‚¢B@

•Åƒgƒbƒv‚É–ß‚é

---

 

‚P‚UD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚’‚ƒ‚ˆ^‚`‚‚’‚‰‚Œ@‚Q‚O‚O‚R‚ÌŠT—v@D

ì¬G‚Q‚O‚O‚R|‚U|‚Q‚O@

‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚R”NMarch/April†‚ª“Í‚«‚Ü‚µ‚½B

‚±‚Ì’†‚Å@‹»–¡‚ðŽ‚Á‚½‚Ì‚Í1“_@‚Å‚·B

Œ»Ý13ƒJ‘‚Å‹¤“¯Œ¤‹†‚ªs‚í‚ê‚Ä‚¢‚éŒg‘Ñ“d˜b‚ÌŽg—p‚Æ”]Žîᇂ̉uŠwŒ¤‹†‚Å‚·‚ªA‚±‚ÌŒ¤‹†‚ÅÇ—á‚Æ‚µ‚ăŠƒXƒg‚³‚ꂽŒ”‚ª—\‘z‚æ‚è­‚È‚¢B]‚Á‚ÄAŒg‘Ñ“d˜b‚ÌŽg—p‚É‚æ‚é”]ŽîᇂȂǂ̃ŠƒXƒN‘‰Á‚ðŒŸo‚·‚éƒpƒ[‚ª¬‚³‚­‚È‚é‰Â”\«‚ª‚ ‚éA‚ÆB@

@‚È‚©‚È‚©@‚±‚Ì‘ÛŒ¤‹†‚à‚¤‚Ü‚­Œ¾‚Á‚Ä‚¢‚é‚Æ‚Í‚¢‚¦‚È‚¢@󋵂̂悤‚Å‚·B‚±‚ÌŒ¤‹†‚É‚Í“ú–{‚àŽQ‰Á‚µ‚Ä‚¢‚Ü‚·B


•Åƒgƒbƒv‚É–ß‚é

---

 

‚P‚VD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚™^‚i‚•‚Ž‚…@‚Q‚O‚O‚R‚ÌŠT—v@

‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚R”NMay/June†‚ª“Í‚«‚Ü‚µ‚½B
‚±‚Ì’†‚Å@‹»–¡‚ðŽ‚Á‚½‚͈̂ȉº‚Ì“_‚Å‚·B

‚PD‰p‘‚Í‚h‚b‚m‚h‚q‚oŠî€‚ðÌ—p@
‚t‚j‚Í“dŽ¥ŠE”˜˜IŠî€‚ðA]—ˆ‚Ì‚m‚q‚o‚a‹K’è‚©‚çA‚h‚b‚m‚h‚q‚o‚̊ɒ²˜a‚³‚¹‚½‹K’è‚É‚·‚éBƒhƒ‰ƒtƒg‚ð5ŒŽ”­s‚µAƒRƒƒ“ƒg‚ð7ŒŽ28“ú‚܂Ŏ󂯕t‚¯‚Ä‚¢‚éB‚»‚ÌŒã‚É”­Œø‚Æ‚È‚éB
Šî€’l‚Í‚h‚b‚m‚h‚q‚oŠî€‚É’²˜a‚µ‚Ä‚¢‚邪AE‹Æ“I‚È”˜˜I‚Å‹ÇŠ”˜˜I‚ÉŠÖ‚µ‚Ä‚ÍA‚h‚b‚m‚h‚q‚oŠî€’l‚Å‚Í‚È‚¢iŠÃ‚¢‹K’èHjB

’F‰p‘‚Å‚Í‚±‚ê‚Ü‚Å‚Í‚h‚b‚m‚h‚q‚o‚æ‚èŠÃ‚¢”˜˜IŠî€‚Å‚ ‚Á‚½B

‚QD‚b‚n‚r‚s‚Q‚P@‰¢B‚Ì“dŽ¥”g‚ÉŠÖ‚·‚鋤“¯Œ¤‹†„i@
@ƒ_ƒuƒŠƒ“‚Å2003”N5ŒŽ‚É‚v‚‚’‚‹‚“‚ˆ‚‚‚ªŠJ³‚ꂽBƒAƒuƒXƒgƒ‰ƒNƒg‚Íwww.cost21.org‚©‚çƒ_ƒEƒ“ƒ[ƒh‚Å‚«‚éB

‚RDƒI[ƒXƒgƒ‰ƒŠƒA‚ÌV‚µ‚¢–³üŽü”g”“dŽ¥ŠE”˜˜I‹K’è@
2003
”N3ŒŽ‚É”­Œø‚Æ‚È‚Á‚½B–³ü’ÊM“ƒ‚©‚ç‚Ì“dŽ¥ŠE”˜˜I‚È‚Ç‚É“K—pBŠî€’l‚ÍuÅV‚̉Ȋw‚É‚æ‚éviÚׂ̔Žš‚È‚Ç‚ÍAƒjƒ…[ƒXƒŒƒ^[‚É‚ÍЉ‚È‚¢j@

‚SDƒJƒŠƒtƒHƒ‹ƒjƒAB‚Ì“dŽ¥ŠE•ñ‚ɑ΂·‚锽˜_@
ƒ~ƒlƒ\ƒ^B‚Ì•ÛŒ’È‚Í4ŒŽuthere is no scientific consensus at this time on the California reportfs conclusioniƒJƒŠƒtƒHƒ‹ƒjƒAB‚Ì“dŽ¥ŠE”˜˜I‚ÉŠÖ‚·‚錋˜_‚ÍAŒ»Žž“_‚ł͉Ȋw“I‚ȃRƒ“ƒZƒ“ƒTƒX‚𓾂Ă¢‚È‚¢jv‚Æ‚¢‚¤•ñ‚ð”­•\‚µ‚½B
•ñ‘‚Íwww.health.state.mn.us/divs/eh/radiation/emf/caemf.htm‚Ń_ƒEƒ“ƒ[ƒh‰Â”\B

’FƒJƒŠƒtƒHƒ‹ƒjƒAB‚Å‚Íu’áŽü”g“dŽ¥ŠE‚͊댯v‚Æ‚¢‚¤ŽïŽ|‚Ì•ñ‘‚ð”­s‚µ‚Ä‚¢‚Ü‚·B

‚TD‰p‘‚Å‚ÍŒg‘Ñ“d˜b‚ÌŠî’n‹Ç‚©‚ç‚Ì“d”g‚É‚æ‚錒N‰e‹¿‚ÉŠÖ‚·‚é‰uŠw’²¸‚ðs‚¤B

@@@ˆÈã@ì¬F@‚Q‚O‚O‚R|‚V|‚P‚P@

•Åƒgƒbƒv‚É–ß‚é

---

 

‚P‚WD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept^Oct@‚Q‚O‚O‚R‚ÌŠT—v

‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚R”NSept/Oct†‚ª“Í‚«‚Ü‚µ‚½B@ì¬F  2003-12-3

‚±‚Ì’†‚Å@‹»–¡‚ðŽ‚Á‚½‚͈̂ȉº‚Ì“_‚Å‚·B
‚PDIEEE‚ÌCOMARil‘̉e‹¿‚ð˜_‹c‚·‚éˆÏˆõ‰ïj‚Í2002”N10ŒŽ‚É@“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚麖¾‚ðo‚µ‚Ä‚¢‚éB@
@@i•MŽÒ‰Y’F‹@‰ï‚ð‚Ý‚Ä‚±‚̺–¾‚ð“üŽè‚µ‚Ä‚Ý‚½‚¢j

‚QDIEEE‚Ì–³üŒg‘Ñ‹@Ší‚©‚ç‚Ì–hŒì•]‰¿‚Ì‹K’è
IEEE 1538
@‚Æ‚µ‚ÄAŒg‘Ñ“d˜b‚â‚»‚Ì‘¼‚ÌŒg‘Ñ‹@Ší‚©‚ç‚Ì‘ª’è–@‚È‚Ç‚Ì‹K’肪³”F‚³‚ꂽB‘ÎÛŽü”g”‚Í‚R300MHz‚©‚ç3GH‚šB

‚RDICNIRP‚Ì“®Œü
ICNIRP
‚Í’áŽü”g“dŽ¥ŠE‚Ì”˜˜I‹K’è‚ÉŠÖ‚µ‚ÄŒ©’¼‚µ‚ðŠJŽn‚µ‚½BiÚׂ͕sÚj

‚SD’†‘‚ÅŠJ³‚ꂽ‘æŽO‰ñ‘Û“dŽ¥ŠEƒZƒ~ƒi[
EWHO‚©‚ç‚̓Œƒpƒ`ƒ‡ƒŠAƒXƒEƒF[ƒfƒ“‚©‚çSalford‚È‚Ç‚ªoÈB
E’†‘‚Å‚ÍA–â‘肪‚È‚©‚Á‚½‚Æ‚¢‚¤Œ¤‹†•ñ‚ÍŠ§s‚³‚ê‚È‚¢ŒXŒü‚É‚ ‚éBWHOƒvƒƒWƒFƒNƒg‚Å‚ÍFX‚ÈŒ¤‹†•ñ‚ðƒŒƒrƒ…[‚·‚邪A’†‘‚Ìꇂ͖â‘肪‚ ‚Á‚½‚Æ‚¢‚¤•ñ‚¾‚¯‚ªŠ§s‚³‚ê‚é‚Ì‚ÅA’†‘‚ÌŒ¤‹†‚ðWHO‚̃Œƒrƒ…[‚Ɋ܂߂邱‚Æ‚ª¢“ï‚Æ‚È‚Á‚Ä‚¢‚éB
E’†‘‚Å‚Í×–EŽÀŒ±‚È‚Ç‚ªs‚í‚ê‚Ä‚¢‚éB50Hz‚ÌŽ¥ŠE‚𔘘I‚µ‚½×–EŽÀŒ±‚Å‚Í1mTi10ƒKƒEƒXj‚ð’´‚¦‚é‚ÆŽ¥ŠE‚̉e‹¿‚ªŒ©‚ç‚ê‚éB
E’†‘‚Æ‚µ‚Ä‚ÍICNIRP‚Ì”˜˜I‹K’è‚Ì”¼•ªi³Šm‚É‚Í‚Ç‚Ì’ö“x‚©‚Í‚Ü‚¾‚¢‚¦‚È‚¢j‚Æ‚¢‚¤‹K’è‚ðl‚¦‚Ä‚¢‚éB
                  
ˆÈã

•Åƒgƒbƒv‚É–ß‚é

---

 

‚P‚XD‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX@2006”N‚i‚‚Ž^‚e‚…‚‚†‚©‚ç

ì¬F@2006-4-6@
 
BIOELECTROMAGNETICS
@NEWSLETTER •@NUMBER 188@JANUARY /FEBRUARY 2006
BEMS
‚̉ïˆõƒjƒ…[ƒX188†@2006”N1|2ŒŽ†‚ª“Í‚¢‚Ä‚¢‚Ü‚·B

‚±‚Ì’†‚ÉA“Á‹L‚·‚ׂ«‚Æ‚¢‚¤‚©A‹C‚̂‚¢‚½ƒjƒ…[ƒX‚ðˆÈ‰º‚ÉЉ‚Ü‚·B

EMF NET EVIDENCE EVALUATIONS PUBLISHED
EU‚ÌEMF-NET‚ÍAÅ‹ßRFCELF‚ÌŒ¤‹†ó‹µ‚ÉŠÖ‚·‚é•ñ‘‚Ì‚Ù‚©‚ÉA’†ŠÔŽü”g”IF‚ÉŠÖ‚·‚é’²¸•ñ‘‚àŠ§s‚µ‚½B
i‚a‚d‚l‚r‚i’F’†ŠÔŽü”g”‚ÉŠÖ‚·‚錤‹†‚Í­‚È‚¢‚Ì‚ÅA‚±‚ÌEMF-NET‚ª‚Ü‚Æ‚ß‚½•ñ‘‚Ì“à—e‚ÉŠÖS‚ª‚ ‚è‚Ü‚·BPDFƒtƒ@ƒCƒ‹‚Å‚±‚Ì•ñ‘‚ðƒ_ƒEƒ“ƒ[ƒh‚µ‚Ü‚µ‚½B‚Ü‚¾“Ç‚ñ‚Å‚¢‚Ü‚¹‚ñBj

SWISS WORKSHOP FOCUSED ON QUALITY IN EMF RESEARCH
2005”N11ŒŽ21-24“úAƒXƒCƒX‚ÅEMFŒ¤‹†‚ÉŠÖ‚·‚é‘Ûƒ[ƒNƒVƒ‡ƒbƒv‚ªŠJ³‚ꂽB
i‚a‚d‚l‚r‚i’F“ú–{‚©‚ç‚ÍNICT‚Ì“n•ÓŽ‚ªoÈj

‚±‚̃[ƒNƒVƒ‡ƒbƒv‚ÌÚׂ͌ã“úAEMF-NET‚É•ñ‘‚Æ‚µ‚Ä•ñ‚³‚ê‚é—\’èB
ƒvƒƒOƒ‰ƒ€‚âˆê•”‚Ìu‰‰“à—e‚ÌPPTƒtƒ@ƒCƒ‹‚ÍAWEB‚ÉŒöŠJ‚³‚ê‚Ä‚¢‚éB

ÅI“ú‚ɘ_‹c‚³‚ꂽƒgƒsƒbƒNƒX‚Æ‚µ‚ÄA“dŽ¥ŠE‚É‚æ‚éDNA‘¹‚ÌŒ¤‹†‚ª‚ ‚éB

REFLEX
Œv‰æ‚ÌŠ²Ž–‚Å‚ ‚éAdlkofer‚ÍAELF‚ÉŠÖ‚·‚éŽÀŒ±Œ‹‰Ê‚Æ‚µ‚ÄA50Hz 1mT‚ÌŽ¥ŠE‚É24ŽžŠÔA’f‘±“I‚È”˜˜Ii5•ªONC10•ªOFFj‚ð‚µ‚½ê‡Aƒqƒg
üˆÛ‰è×–E‚ÉDNA‚Ì1d‹y‚Ñ2d—†ù‚É‘¹‚ª‹N‚±‚邱‚Æ‚ðŒ©o‚µ‚½B

‘±‚¢‚ăCƒ^ƒŠƒA‚ÌScarfi‚ÍADNA‚Ì—†ù‘¹‚ðÄŒŸØ‚·‚邱‚Æ‚ª‚Å‚«‚È‚©‚Á‚½‚Æq‚ׂ½B”Þ‚ç‚ÍARudiger‚ç‚ÌŽÀŒ±‚Æ‚Å‚«‚邾‚¯“¯ˆê‚É‚µAƒRƒƒbƒgƒAƒbƒZƒC–@‚Å4‰ñŒJ‚è•Ô‚µŽÀŒ±‚ð‚µ‚½‚ªA‚Ç‚Ì—v‘f‚à‘‰Á‚·‚邱‚Æ‚Í‚È‚©‚Á‚½A‚ÆB

”Þ—‚ÍAƒIƒŠƒWƒiƒ‹‚ÌŒ¤‹†¬‰Ê‚Ì’ÇŽŽ‚ÉŽ¸”s‚µ‚½ê‡A—¼•û‚ÌŽŽŒ±‹@ŠÖ‚ÉŒð—ˆöŽq‚ª‚ ‚é‚©A‚Ü‚¾”»‚ç‚È‚¢AŒŸo‚³‚ê‚Ä‚¢‚È‚¢ŽÀŒ±Žè–@‚È‚Ç‚Ì·ˆÙ‚ª‚ ‚é‚Ì‚Å‚ ‚낤‚ÆAq‚ׂ½B

ƒo[ƒ[ƒ‹‘åŠw‚ÌSchar‚ç‚ÍAREFLEXŒv‰æ‚ÌRudiger‚ç‚ÌŒ¤‹†‚Ì’ÇŽŽ‚ðs‚¢AELF“dŽ¥ŠE‚Ƀqƒg‚Ì×–E‚𔘘I‚µ‚½ê‡‚ÉADNA—†ù‚É‘¹‚ª‹N‚±‚邱‚Æ‚ðŠm”F‚µ‚½B

Schar
‚ÍAˆê”ʂ̶ŠˆðŒ‚ÅAƒqƒg‚Ì×–E‚ÌDNA‚Ì1d—†ù‚Ì‘¹‚Í–ˆ“ú1–œŒˆÊ’èí“I‚É”­¶‚µ‚Ä‚¢‚éB‚»‚ê‚ç‚Ì1d—†ù‚Ì‘¹‚ÍC•œ‹@”\‚É‚æ‚Á‚ÄAC•œ‚³‚ê‚Ä‚¢‚éBDNA‚Ì2d—†ù‚Ì‘¹‚Í‹H‚Å‚ ‚èAd‘å‚Å‚ ‚éB

Rudiger‚ç‚ÌŽÀŒ±‚É—p‚¢‚½“¯‚¶‘•’u‚ÅA“¯‚¶×–E‚ð—p‚¢‚ÄASchar‚ç‚ÍRudiger‚ç‚Æ“¯‚¶Œ‹‰Ê‚𓾂½A50Hz‚ÌŽ¥ŠE‚̘A‘±”˜˜I‚Å‚ÍDNA‘¹‚Í”­¶‚¹‚¸A15ŽžŠÔ‚Ì’f‘±”˜˜I‚ÅADNA‚Ì—†ù‚Ì‘¹—¦‚Ì‘‰Á‚ðŒ©o‚µ‚½B

i‚a‚d‚l‚r‚i’F50Hz‚̘A‘±”˜˜I‚ł͉e‹¿‚ª‚È‚­A’f‘±”˜˜I‚ʼne‹¿‚ªo‚½‚Æ‚¢‚¤‚±‚Æ‚©‚çA‚±‚ê‚ç‚Ì”˜˜I‘•’u‚Ì’f‘±‚ÍAƒ[ƒƒNƒƒX‚É‚È‚Á‚Ä‚¢‚éH‚à‚µƒ[ƒƒNƒƒX‚É‚È‚Á‚Ä‚¢‚È‚¢‚Æ‚·‚ê‚ÎA’f‘±‚Ì“s“xA‚©‚È‚è‘å‚«‚¢dB/dt‚É‚æ‚é—U“±“d—¬‚Ì”­¶‚É‚æ‚é‰e‹¿‚ªŒœ”O‚³‚ê‚éBj

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚P‚X‚`D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚l‚‚’‚ƒ‚ˆ^‚`‚‚’‚‰‚Œ@‚Q‚O‚O‚U‚ÌŠT—v@

‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚U”N@‚l‚‚’‚ƒ‚ˆ/‚`‚‚’‚‰‚Œ†‚ª“Í‚«‚Ü‚µ‚½B
“Á‹LŽ–€‚Í‚È‚¢B

 

•Åƒgƒbƒv‚É–ß‚é

---

 


‚P‚X‚aD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚i‚•‚Œ‚™^‚`‚•‚‡@‚Q‚O‚O‚U‚ÌŠT—v@


‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚U”NJuly/Aug†‚ª“Í‚«‚Ü‚µ‚½B
“Á‹LŽ–€‚Í‚È‚¢B

 

•Åƒgƒbƒv‚É–ß‚é

---

 

20D‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX@2006”NSept^Oct‚©‚ç

ì¬F@20068-1-11@

 

‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O6”NSept/Oct†‚ð‚悤‚â‚­“Ç‚ÝI‚í‚Á‚½B
“Á‹L‚µ‚ÄЉ‚鎖€‚Í‚È‚¢B

•Åƒgƒbƒv‚É–ß‚é

---

 

2‚PD‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX@2006”N‚m‚‚–^‚c‚…‚ƒ†‚©‚ç

@ì¬F‚Q‚O‚O‚W|‚P|‚P‚P

–‚d‚l‚e|‚m‚d‚si‚d‚t‚Ì“dŽ¥”gŠÖŒWî•ñŒöŠJƒTƒCƒgjA‚e‚f‚eiƒhƒCƒc‚Ì–³üŠÖŒWŒ¤‹†‹¦‰ïj‚ª‚Žü”g“dŽ¥ŠE‚Æ“dŽ¥ŠE‚ÌŽq‹Ÿ‚ւ̉e‹¿‚ÉŠÖ‚·‚éƒ[ƒNƒVƒ‡ƒbƒv‚ðŠJÃB2006”N11ŒŽ––‚ÉŠJ×\’èB
ˆÈ‰º‚̃TƒCƒg‚Éî•ñ‚ªŒöŠJ‚³‚ê‚Ä‚¢‚éBhttp://www.fgf.de/

‚a‚d‚l‚r‚i’FŽÀÛ‚Ì‚±‚̃[ƒNƒVƒ‡ƒbƒv‚É
Scope, Program, Abstracts and Presentations ‚͈ȉº‚̃TƒCƒg‚É‚ ‚é: http://www.cost281.org@@
‘½”‚Ì”­•\‚ª‚ ‚èA“Ç‚Ý‚«‚ê‚È‚¢B

–ŠØ‘‚Ì“dŽ¥ŠE‚ÌŒ¤‹†ó‹µ
‚±‚Ì’†‚ÅA‚Q‚O‚j‚g‚š‚ÌŽ¥ŠE”˜˜I‚ÌŒ¤‹†‚ðs‚Á‚Ä‚¢‚邱‚Æ‚ªÐ‰î‚³‚ê‚Ä‚¢‚éB

ŠØ‘‚Ì‚l‚n‚b‚h‚d¤‹ÆEH‹ÆE“d—ÍÈ‚Í2004”N‚É‹K’è‚ð‰ü’肵AŽŸ‚É’è‚ß‚½B@
@‚U‚O‚g‚š@“dŠE@‚RD‚T‚‹‚u^‚iZ‹ŠÂ‹«j@‚VD‚O‚‹‚u^‚i”ñZ‹ŠÂ‹«j
@‚U‚O‚g‚š@Ž¥ŠE@‚W‚R‚R‚‚fiˆê”ÊŒöOj


–‚d‚l‚e|‚m‚d‚s‚Í2004”N10ŒŽƒvƒ‰ƒn‚ÅŠJ³‚ꂽ“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚é‘Ûƒ[ƒNƒVƒ‡ƒbƒv‚Ìu‰‰W‚ð“Z‚ß‚½A18ƒy[ƒW‚Ì•¶‘‚Æ‚µ‚ÄB
@ŽQÆ‚t‚q‚kFhttp://www.jrc.cec.eu.int/emf-net/

‚±‚Ì•¶‘‚Ì’†‚ÅAˆÈ‰º‚̃Tƒ}ƒŠ[‚ª‹LÚ‚³‚ê‚Ä‚¢‚éu“dŽ¥”g‰ß•qÇ‚Í•a‘Ô‚Å‚ ‚éA¡Œã‚Íu“dŽ¥”g‚ÉŠÖ˜A‚·‚é–{‘Ô«ŠÂ‹«”ñŠ°—eÇi
IEIjv‚Æ–½–¼‚·‚ׂ«‚Å‚ ‚éB
‚È‚º‚È‚ç‚ÎA‚±‚ÌŽí‚ÌÇó‚Í“dŽ¥”g‚Æ‚ÌŠm’肵‚½ˆö‰ÊŠÖŒW‚ª‚È‚¢‚©‚ç‚Å‚ ‚éBv‚ÆB

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚Q‚QD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@April^May@‚Q‚O‚O‚V‚ÌŠT—v@

‚Q‚O‚O‚V|‚T|‚Q‚U@
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚V”NApril/May†‚ª“Í‚«‚Ü‚µ‚½B
“Á‹LŽ–€‚Í‚È‚¢B
‚µ‚©‚µAEBEA2007”N‚É”­•\‚³‚ꂽREFLEXƒvƒƒWƒFƒNƒg‚̈êŠÂ‚Æ‚µ‚Äs‚í‚ꂽ100ƒÊT‚T‚OHz‚ÌŽ¥ŠE‚̉e‹¿‚ÉŠÖ‚·‚錤‹†‚ÌЉŒfÚ‚³‚ê‚Ä‚¢‚éB

•Åƒgƒbƒv‚É–ß‚é

---

 

‚Q‚Q‚`D‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@May^‚i‚•‚Ž‚…@‚Q‚O‚O‚V‚ÌŠT—v@

‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚V”NMay^‚i‚•‚Ž‚…†‚ª“Í‚«‚Ü‚µ‚½B
‹à‘ò‚Å‚a‚d‚l‚r‚Ì‘‰ï‚ªŠJ³‚ꂽB‚»‚Ì’†‚Å‚Ì”­•\˜_•¶‚ÌЉ

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚Q‚RD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@Sept^Oct@‚Q‚O‚O‚V‚ÌŠT—v@

‚Q‚O‚O‚V|‚P‚Q|‚Q‚T@
‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚V”NSept/Oct†‚ª“Í‚«‚Ü‚µ‚½B
“Á‹LŽ–€‚Í‚È‚¢B
2007
”N‚É‹à‘ò‚ÅŠJ³‚ꂽBEMS‚Ì”NŽŸ‘‰ï‚ÌЉî‹LŽ–‚ªŒfÚ‚³‚ê‚Ä‚¢‚éB

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚Q‚SD‚a‚d‚l‚r@‚m‚…‚—‚“‚Œ‚…‚”‚”‚…‚’@‚m‚‚–^‚c‚…‚ƒ@‚Q‚O‚O‚V‚ÌŠT—v@


‚a‚d‚l‚r‰ïˆõƒjƒ…[ƒX‚Q‚O‚O‚V”N‚m‚‚–/‚c‚…‚ƒ†‚ª“Í‚«‚Ü‚µ‚½B
“Á‹LŽ–€‚Í‚È‚¢B

 

 

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚PD‚a‚‰‚@‚d‚Œ‚…‚ƒ‚”‚’‚‚l‚‚‡‚Ž‚…‚”‚‰‚ƒ‚“@‚m‚D1@‚P‚X‚X‚S ˜_•¶Ž‚ÌŠT—vD

 

94”N1

1) J. D. Sahl et al: Exposure to 60Hz Magnetic Fields in the Electric Utility Work Environment.

@•Ä‘‚Ì“d—Íì‹Æ]Ž–ŽÒ‚Ì–\˜I—ʂ𑪒èBÅ‘å‚Ì–\˜I‚ðŽó‚¯‚éEŽí‚Å‚Ì99%ƒp[ƒZƒ“ƒ^ƒCƒ‹‚Ìő厥ŠE‹­“x‚Í29ƒÊT‚Å‚ ‚éB

@(BEMSJ’F0.3ƒKƒEƒX‚̌𗬎¥ŠEAŽv‚Á‚½‚æ‚è­‚È‚¢‚Ì‚Å‚Í‚È‚¢‚¾‚낤‚©?)

 

2) W. T. Kaune et al: Development of a Protocol for Assessing Tine-Weighted-Average Exposure of Young Children to Power Frequency Magnetic Fields.

@W/Leeper‚Ì–\˜IƒR[ƒh‚ÆŽÀÛ‚ÌŽ¥ŠE–\Œ‚Æ‚Í‘ŠŠÖ‚ªÌ‚ê‚Ä‚¢‚È‚¢‚±‚Æ‚ª”»–¾‚µ‚½B

 

3) D. L. Nadar et al: A Model for Characterizing Residential Ground Current and Magnetic Field Fluctuation.

@ƒJƒiƒ_‚Ì“d—͉ïŽÐ‚ÌŒ¤‹†BŽÀۂ̉ƒë‚Å‚Ì”­¶Œð—¬Ž¥ŠE‹­“x‚ÍAƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚æ‚ê‚ÍAŒð—¬”z“dü˜H‚â‰Æ’ë“dŠí‹@Ší‚©‚ç‘å’n‚ɘR‰k‚µ‚Ä‚¢‚é‘å’n“d—¬’l‚Ì’l‚¨‚æ‚Ñ‚»‚Ì‘å‚«‚È•Ï“®‚É‚æ‚é‚à‚Ì‚Æ„’è‚Å‚«‚éB

 

4) M. Reito et al: Sleep Inducing Effect of Low Energy Emission Therapy.

@27MHz“dŽ¥”g‚̈ã—Éž—p‚ÌŒ¤‹†B

 

5) E. M. Goodman et al: Magnetic Fields after Translation in Escherichea Coli.

@œÜŽ¡—ÂɎg—p‚·‚é‚Æ“¯‚¶”gŒ`‚̃pƒ‹ƒXŽ¥ŠE(15ƒKƒEƒX‚̃s[ƒN’l)‚ð‘å’°‹Ûi×–Ej‚Ɉó‰Á‚µ‚½‚ç.’`”’Ž¿‚ɉe‹¿‚ªo‚½B

 

6) F. L. Tabran et al: Enhanced Mutagenic Effect of a 60Hz Time-Varying Magnetic Field on Numbers of Azide-Induced TA100 Reverting colonies.

@2ƒKƒEƒX‚Ì60HzŽ¥ŠE‚ð×–E‚Ɉó‰ÁBAzide(Šˆ«Ü)‚ð“ü‚ꂽꇂɎ¥ŠE‚É‚æ‚éƒREƒvƒƒ‚ƒ^[Œø‰Ê‚ªŒŸo‚³‚ꂽBAzide‚ð“ü‚ê‚È‚¢‚ÆŽ¥ŠE‚É‚æ‚éŒø‰Ê‚ªo‚Ä‚±‚È‚¢B

(BEMSJ’F‚±‚ê‚Íd—v‚È’mŒ©‚Å‚Í‚È‚¢‚©?‚æ‚è’჌ƒxƒ‹‚ÌŽ¥ŠE‚Å‚Í‚Ç‚¤‚©?) )

 

•Åƒgƒbƒv‚É–ß‚é

---

 

 

1AD‚a‚‰‚@‚d‚Œ‚…‚ƒ‚”‚’‚‚l‚‚‡‚Ž‚…‚”‚‰‚ƒ‚“@‚m‚D2@‚P‚X‚X‚S ˜_•¶Ž‚ÌŠT—vD

 

94”N2

7) H. Lai et al: Microwave irradiation Affects Radial-Arm Maze Performance in the Rat.

@2450MHz, 60V/m (1mW/cm2‚ÌANSI‚Ì‹–—eƒŒƒxƒ‹)‚ðˆó‰ÁB

@Ž–‘O‚Ì’“ü‚µ‚½–ò•i‚É‚æ‚Á‚ÄAƒ‰ƒbƒg‚Ìs“®‚ւ̉e‹¿“x‚ªˆÙ‚È‚éB

 

8) T. A. Litovitz et al: Superimposing Spatially Coherent Electromagnetic Noise Inhabits Fields-Induced Abnormalities in Developing Chick Embryos.

@Œ{¬‰®ƒvƒƒWƒFƒNƒg‚Æ“¯‚¶ƒpƒ‹ƒXŽ¥ŠE(ƒs[ƒNŽ¥ŠE1ƒÊTA—§‚¿ã‚èE—§‰º‚ª‚莞ŠÔ2ƒÊS)‚ðˆó‰Á‚µ‚½Žž‚͈Ùí”­¶A‚µ‚©‚µA“¯—l‚ÈŽ¥ŠE‹­“x’l‚É•Û‚¿‚È‚ª‚烉ƒ“ƒ_ƒ€‚ȃmƒCƒYŽ¥ŠE‚ðdô‚µ‚½Žž‚ÍA×–E‚ÌŠ´Žó«‚É‚¨‚¯‚éS/N”䂪—ò‰»‚µ‚½ˆ×‚©A‰e‹¿‚ªŒ»‚í‚ê‚È‚©‚Á‚½B

(BEMSJ’FdB/dT0.5T/S‚Å‚©‚È‚è‘å‚«‚¢B‚±‚ê‚Å‚Í‚©‚È‚è‚Ì‘å—U“±“d—¬‚ª—¬‚ê‚ĉe‹¿‚ªo‚Ä‚à‚¨‚©‚µ‚­‚È‚¢B)

 

9) N. Guzelsu et al: Effect of Electromagnetic Stimulations with different Waveforms on Cultured Chick Tendon Fibroblasts.

@×–E‚ÉŽOŠp”g‚ÌŽ¥ŠE‚ðˆó‰ÁA“¯‚¶”gŒ`‚łೕ‰‚É”½“]‚·‚éꇂƈê•ûŒü‚Ɉê’è‚ÌꇂŔäŠrB

(BEMSJ’F‚æ‚­‚í‚©‚ç‚È‚¢. )

 

10) S. N. Ayrapeetyyan et al: Magnetic Fields alter Electrical Properties of Solutions and their Physiological Effects.

@ƒAƒ‹ƒƒŠƒA‚ÌŒ¤‹†BDC20-500ƒKƒEƒX‚ÌŽ¥ŠE‚Í—n‰tEŒŒ‰t‚Ì«Ž¿‚ð•Ï‚¦‚éŒø‰Ê‚ª‚ ‚èANa, K, ClƒCƒIƒ“‚Í–³•Ï‰»ACaƒCƒIƒ“‚͉e‹¿‚ðŽó‚¯‚éB

@(BEMSJ’F‚±‚ÌŽÀŒ±‚ª³‚µ‚¯‚ê‚ÎA“ú–{‚ÌŽ¥‹Cƒ}ƒOƒlƒbƒg‚ÌŽ¡—ÃŒø‰Ê‚Ì—vˆö‚ª”»–¾‚·‚éB)

 

11) D. O. Brown et al: Characteristics of Microwave Evoked Body Movements in Mice.

@‘å“d—͂̃pƒ‹ƒXƒŒ[ƒ_“d—Í(160W`KW‚̃I[ƒ_)‚ðˆó‰Á‚µ‚½Žž‚Ì‘l‚Ì‹““®‚𒲸B

‘̉·‚̉·“x㸒l‚ª0.05Ž‚É‘Š“–‚·‚é‘å“d—͈ó‰Á‚Å‚à‰e‹¿‚ªŒ»‚ê‚é‚Ì‚ÅA‚±‚ê‚͈ê‚‚̔ñ”MŒø‰Ê‚Å‚ ‚é‰Â”\«‚ª‚ ‚éB

@(BEMSJ’F”ñŒFŒø‰Ê‚Æ‚¢‚¢‚È‚ª‚ç‚à‚©‚È‚è‚Ì‘å“d—͈ó‰ÁŽž‚Å‚ ‚éB)

 

12) J. A. D'Andrea et al; Rhesus Monkey Behavior during Exposure to High Peak Power 5.62MHz Microwave Pulse.

@SAR‚ª4W/kg‚ð‰z‚¦‚é‚Ɖe‹¿‚ª‚Å‚éBƒs[ƒN“d—Í‚ªˆÙ‚È‚Á‚Ä‚à•½‹Ï’l‚Å‚ÌSAR‚ª“¯ˆê‚Å‚ ‚ê‚ΉŽ‚Ì‹““®‚ɑ΂·‚é‰e‹¿“x‚Í“¯‚¶‚Å‚ ‚éB

(BEMSJ’F‚æ‚Á‚ÄAƒ}ƒCƒNƒ”g‚Å‚ÍSAR‚Ål‚¦‚ê‚΂悢B)

 

 

•Åƒgƒbƒv‚É–ß‚é

---

 

 

‚PBD‚a‚‰‚@‚d‚Œ‚…‚ƒ‚”‚’‚‚l‚‚‡‚Ž‚…‚”‚‰‚ƒ‚“@‚m‚D3@‚P‚X‚X‚S ˜_•¶Ž‚ÌŠT—vD

 

94”N3†@@@@@.

13) C. G. Liddle et al: Alteration of Life Span of Mice Chronically Exposed to 2.45GHz CW Microwave.

@ƒlƒYƒ~‚ÌŽõ–½‚ɑ΂·‚é‰e‹¿“x‚ðŒ¤‹†A3mW/cm2–˜‚Í–â‘è‚È‚µA10mW/cm2‚Å‚Í–â‘è‚Å‚ ‚éB

@BEMSJ’F(臒l‚ª‚ ‚邱‚Æ‚ª”»–¾B)

 

14) T. M. Phllippova et al: Influence of Microwaves on Different Types of Receptors and the Role of Peroxidation of Lipids on Receptor-Protein Shedding.

@ƒƒVƒA‚ÌŒ¤‹†@@@@.

@900MHzƒ}ƒCƒNƒ”g‚ÌŒ¤‹†B

(BEMSJ’F‚æ‚­‚í‚©‚ç‚È‚¢B )

 

15) D. A. Savitz et al: Correlation among Indices of Electric and Magnetic Field Exposure in Electric Utility Workers.

@“d—Í]Ž–ŽÒ‚Ì”˜˜I‚Í90%ƒp[ƒZƒ“ƒ^ƒCƒ‹‚Å2ƒÊT‚ƈȊO‚É­‚È‚¢B

@‚±‚ÌŒ¤‹†‚É‚Í“ú–{‚Ì“d—Í’†Œ¤‚àŽQ‰æ‚µ‚Ä‚¢‚éB

 

16) C. Grant et al: Protection against Focal Cerebral Ischenia Following Exposure to a Pulsed Electro Magnetic Field.

@”]“à‚Ì•a‘ƒ‚ɑ΂·‚鎡—Õû–@B75Hz, 28ƒKƒEƒX‚ÌŽ¥ŠEB

 

17) J. P. Blanchard et al: Clarification and Application of an Ion Parametric Resonance Model for Magnetic Field Interactions with Biological Systems

@DCŽ¥ŠE‚ƌ𗬎¥ŠE‹­“x‚ÆŽü”g”A‰e‹¿‚ðŽó‚¯‚éƒCƒIƒ“‚ÌŠÔ‚ÉIPR‹¤–‚Åà–¾‚Å‚«‚邱‚Æ‚Ì—˜_‚ð’ñ¥B

 

18) C. F. Blacknan et al: Empirical Test an Ion Parametric Resonance Model for Magnetic Fields Interactions with PC-12 Cells.

 17)‚Ì—˜_‚ðŽÀŒ±“I‚ÉØ–¾B

@(BEMSJ’F‚±‚ꂪ^ŽÀ‚Å‚ ‚ê‚ÎA˜R‰kŽ¥‹C‚ÌŽü”g”¬•ª‚Æ’nŽ¥‹C‹­“x‚ÌŠÖ˜A‚łǂ̂悤‚ȃCƒIƒ“‚ɉe‹¿‚ª‚Å‚Ä‚à‚¨‚©‚µ‚­‚È‚­‚È‚éBÌ’ñ¥‚³‚ꂽƒTƒCƒNƒƒgƒ“‹¤–‚͂¤‚Ü‚­ŽÀØ‚³‚ê‚È‚©‚Á‚½‚ªA¡‰ñ‚ÌIPR‚͉”\«‚ª‚‚¢Bj

 

 

•Åƒgƒbƒv‚É–ß‚é

---

 

‚PCD‚a‚‰‚@‚d‚Œ‚…‚ƒ‚”‚’‚‚l‚‚‡‚Ž‚…‚”‚‰‚ƒ‚“@‚m‚D‚S@‚P‚X‚X‚S ˜_•¶Ž‚ÌŠT—vD


‚a‚d‚l‚r˜_•¶Ž@‚P‚X‚X‚S”N‘æ‚S†‚ÌŠT—v

 

‚PjW. T. Kaune et al:

Simplification of the Wertheimer-Leeper Wire Code

 

ƒƒCƒ„ƒR[ƒh‚ÉŠÖ‚·‚é’ñˆÄB

ʼn‚ÉWerthemer‚ç‚É‚æ‚Á‚ÄDenver’n‹æ‚ÅWire@Code‚ª’ñˆÄ‚³‚êA‚»‚ê‚ÉŠî‚¢‚ĬŽ™Šà‚Æ‘—“dü—R—ˆ‚ÌŽ¥ŠE‚Æ‚ÌŠÖ˜A«‚ªŽ¦´‚³‚ꂽ‚ªADenver’n‹æ‚Ì‘—“dE”z“d‚Ì‚â‚è•û‚̓AƒƒŠƒJ‚Ì‘¼‚Ì’n‹æ‚Æ‘å‚«‚­ˆÙ‚È‚é–Ê‚ð‚à‚Á‚Ä‚¢‚½B

 

‚Q) ADWDKropinski et al:

Sinusoidal 60 Hz Electromagnetic Fields Failed to Induce Changes in Protein Synthesis in Escherichia Coli(‘å’°‹Û)

 

60Hz@3mT‚ÌŽ¥ŠE‚É”˜˜IA‘å’°‹Û‚Ì‚½‚ñ‚Ï‚­Ž¿‡¬‚ɑ΂µ‚ÄA‰·“x‚ð+/-0.1“x‚ɃRƒ“ƒgƒ[ƒ‹‚·‚ê‚ÎAŽ¥ŠE‚̉e‹¿‚Í–³‚©‚Á‚½B ‰·“xæ㸂ª‚ ‚ê‚ÎA‚½‚ñ‚Ï‚­Ž¿‡¬‚ɕω»‚ªo‚éB

 

‚R) I. Nordenson et al:

Chromosomal Aberration iõF‘̈Ùíjin@Human Amniotic Cells after Intermittent Exposure to Fifty Hertz Magnetic Fields

 

50Hz@30ƒ}ƒCƒNƒƒeƒXƒ‰‚ÌŽ¥ŠE‚ւ̘A‘±”˜˜I‚ÅõF‘̂ɉe‹¿‚ª‚Å‚½A

‚µ‚©‚µA300ƒ}ƒCƒNƒƒeƒXƒ‰‚ÌŽ¥ŠE‚ւ̘A‘±”˜˜I‚ł͉e‹¿‚Ío‚È‚©‚Á‚½B

50Hz@30ƒ}ƒCƒNƒƒeƒXƒ‰‚ÌŽ¥ŠE‚Ö‚ÌŠÔŒ‡iOn/Offj”˜˜I‚ł͉e‹¿‚ª‚Å‚½B

 

ŽÀŒ±‘•’u‚̓[ƒƒNƒƒXƒXƒCƒbƒ`‚É‚Í‚È‚Á‚Ä‚¢‚È‚¢B

iŽÀŒ±ðŒ‚ª‰½‚©•sˆÀ’肳‚ðŽ‚Á‚Ä‚¢‚éH@Ž¥ŠE‚ÌŽžŠÔ•Ï‰»dB/dt‚ª‰e‹¿‚µ‚Ä‚¢‚éHj

 

‚S) A. Orlando et al:

Effect of Microwave Radiation on the@Permeabilityi“§‰ß—Íjof Carbonic Anhydrasei’E…y‘fj Loaded Unilamellar Liposomes(Ž‰–b¬‘Ì)

 

2.45GHz‚̃}ƒCƒNƒ”g@6W/kg‚ðˆó‰ÁA120•ªŒã‚Ƀ}ƒCƒNƒ”g‚̉e‹¿‚ª‚Å‚½B

 

‚T) J. Bruno et al:

Synthesis of Diazoluminomelanin (DALM) in@HL-60 Cells for Possible Use as a Cellular-Level Microwave Dosimeter

 

 2.45GHz 0-20W‚ŃeƒXƒgB@“ï‰ð‚Å—‰ð‚Å‚«‚¸B

 

‚U) S. Gold et al:

Exposure of Simian Virus-40-Tranformed Human@Cells to Magnetic Fields Results in Increased Levels of T-Antigen mRNA and Protein.

 

 60Hz 8ƒ}ƒCƒNƒƒeƒXƒ‰Peak‚Å×–E‚ɉe‹¿‚ª‚Å‚½B@(‚©‚È‚è”÷Žã‚ÈŽ¥ŠE‚Å‚à×–EŽÀŒ±‚ʼne‹¿‚ª‚Å‚½j

 

‚V) J. L. Borghesi et al:

Development and Evaluation of a Location-Specific Wire Code

 

Wertheimer-Leeper‚̃ƒCƒ„ƒR[ƒh‚Í‚»‚ê‚È‚è‚̈Ӗ¡‚ðŽ‚Á‚Ä‚¢‚邪A—LˆÓ‚ȃIƒbƒY”ä‚Æ‚µ‚Ä‚PD‚X‚ð’´‚¦‚錤‹†‚ðs‚È‚¤ˆ×‚É‚ÍAÇ—á‚S‚Q‚OˆÈãA‘ÎÆ‚W‚S‚OˆÈオ•K—v‚Æ‚È‚éB

 

i“Á’è‚ÌŠà‚Å‚±‚ꂾ‚¯‚ÌÇ—á‚ðW‚߂邱‚Æ‚ª‚Å‚«‚é‚©Hj

 

‚W) C. L. Kowalczuk et al:

Effects of Prenatalio¶‘Oj Exposure@to 50 Hz Magnetic Fields on Development in Mice. 1. Implantation Rate and Fetal Development.

 

50Hz 20mT‚ÌŽ¥ŠE‚ð‘l‚Ée‘l‚Ɉó‰ÁA¶‚Ü‚ê‚Ä‚«‚½Žq‘l‚É­‚µ‚͕ω»‚ªŒ»‚ꂽ‚ªAŒ‹˜_‚Æ‚µ‚Ä‚ÍŽ¥ŠE‚̉e‹¿‚ª‚È‚¢B

‚±‚ÌŒ¤‹†‚Í–ÓŒŸ–@iƒuƒ‰ƒCƒ“ƒhj‚ŃeƒXƒg‚ðs‚È‚Á‚Ä‚¢‚éB

 

‚X) Z. Sienkiewicz et al:

Effects of Prenatal Exposure to 50 Hz@Magnetic Fields on Development in Mice. ‡UDPostnatali¶Œãj Development and Behavior.

 

‚W‚Æ“¯‚¶Œ¤‹†A¶Œã‚Ì”­ˆç‚âs“®‚Ȃǂɉe‹¿‚ÍŒ©‚ç‚ê‚È‚¢B


•Åƒgƒbƒv‚É–ß‚é

---

 

‚QD‚a‚‰‚@‚d‚Œ‚…‚ƒ‚”‚’‚‚l‚‚‡‚Ž‚…‚”‚‰‚ƒ‚“@‚m‚D‚R@‚P‚X‚X‚U ˜_•¶Ž‚ÌŠT—vD


BEMS
˜_•¶Ž‚ÉŒfÚ‚³‚ꂽ“dŽ¥”g‚ÌŒ¤‹†F
ƒAƒƒŠƒJ‚̶‘Ì“dŽ¥‹CŠw‰ï‚̘_•¶Ž‚X‚U”N‘æ‚R†‚ð“Ç‚Ý‚Ü‚µ‚½B@‚»‚Ì“à—e‚ðŠÈ’P‚ÉЉ‚Ü‚·B‰p•¶‚Ìê–å˜_•¶‚ð—‰ð‚Å‚«‚½•”•ª‚ðЉ‚Ü‚·B

1
j@D. Miller ;
Miniature-Probe Measurements of Electric Fields induced by 60 Hz Magnetic Fields in Rats.

‚Q‚‚‚Ì‹óŠÔ•ª‰ð”\‚ð‚à‚ƒAƒ“ƒeƒi‚ð쬂µ‚ÄA‘l‚ÉŠO•”‚©‚ç‚U‚O‚g‚šA‚Pƒ~ƒŠƒeƒXƒ‰‚ÌŽ¥ŠE‚ðˆó‰Á‚µ‚½Žž‚ÉA‘Ì“à‚É—U“±‚³‚ê‚é“dŠE‚ðŽÀ‘ªB@
ƒtƒ@ƒ“ƒgƒ€“™‚ł̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚Å“¾‚ç‚ꂽ—˜_“I‚È“dŠE’l‚É”ä‚ׂÄAŠT‚µ‚Ĭ‚³‚¢’l‚Å‚ ‚Á‚½B
‚±‚ê‚Í‘l‚Ì‘Ì“à‚Ì\¬‘Ÿ•¨‚ª“d‹C“I‚É‘S‚­‹Ïˆê‚È“Á«‚Å‚Í‚È‚¢‚±‚Æ‚É‹Nˆö‚·‚é‚ÆŽv‚í‚ê‚éB@

i‚±‚Ì‚±‚Ƃ̓Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚Ì•û‚ªŒµ‚µ‚­o‚é‚Ì‚ÅAƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚³‚¦‚«‚¿‚ñ‚Æs‚È‚¦‚ÎAl‘Ì“™‚̉e‹¿‚Í‘z’è‚Å‚«‚é‚Æ‚¢‚¤‚±‚ÆH‚©‚à‚µ‚ê‚È‚¢Bj@

2
j. B. Wilson et al;
Magnetic Field Characteristics of Electric Bed-heating Devices
@

“d‹C–Ñ•z“™‚ÌŽ¥ŠE‹­“x‚𑪒èAˆÈŠO‚ÆŽ¥ŠE‹­“x‚Í’á‚¢B@
‘ª’è—á‚Æ‚µ‚Ä]—ˆŒ^‚Ì“d‹C–Ñ•z‚Å‚Í0E5‚©‚ç2E5‚‚f‚ÌŠÔ‚ðí‚É•Ï“®‚µ‚ÄA‚»‚Ìd‚Ý•t‚¯‚ð‚µ‚½•½‹Ï’l‚Í1E12‚‚fB@

’á“dŽ¥ŠEƒ^ƒCƒv‚ÆŒ¾‚í‚ê‚éVŒ^‚Ì“d‹C–Ñ•z‚Íí‚É–ñ‚P‚‚f’ö“x‚ð˜R‰k‚µ‚ÄA‚»‚Ìd‚Ý•t‚¯‚ð‚µ‚½•½‹Ï’l‚Í1E12‚‚f‚Æ‚¢‚¤—ႪЉ‚ê‚Ä‚¢‚éB@

‚±‚ê‚ç‚̃f[ƒ^‚̓Jƒ‹ƒtƒHƒ‹ƒjƒA‚̉uŠw’²¸i‚±‚¤‚µ‚½“d‹C–Ñ•z“™‚ªˆÙí”DP‚ÆŠÖŒW‚µ‚Ä‚¢‚é‚©‚ÌŒ¤‹†j‚ÌŠî‘bŽ‘—¿‚Æ‚È‚éB@

i“d‹C–Ñ•z‚Í“dŠE‚Í‹­‚¢‚ªŽ¥ŠE‚ÍŽã‚¢‚Ì‚Å‚Í‚È‚¢‚©‚ÆŽ„‚àŠ´‚¶‚Ä‚¢‚Ü‚µ‚½‚ªA‚Ü‚³‚É‚»‚Ì’Ê‚è‚̃f[ƒ^‚Å‚µ‚½B‚±‚¤‚µ‚½Ž¥ŠE‚Ì‘ª’èƒf[ƒ^‚ðŠî‚É‚µ‚½”DP‚Ƃ̉uŠw’²¸Œ‹‰Ê‚ªŒö•\‚³‚ê‚é‚Ì‚ð‘Ò‚¿‚Ü‚µ‚傤Bj@

3
j Z. Sienkiewice et al;@
Acute Exposure to Power-Frequency
@Magnetic Fields Has No Effect on the Acquisition of Spatial Learning Task By Adult Male Mice.@

‘l‚ðŽg‚Á‚ÄA”]‚Ì“®ì‚ւ̉e‹¿‚ðŒ¤‹†B ŒP—ûì‹Æ‚ª‚T‚O‚g‚šŽ¥ŠE‚É‚æ‚è‰e‹¿‚ª‚ ‚é‚©‚𒲸B@
‚Tƒ}ƒCƒNƒƒeƒXƒ‰i50ƒ~ƒŠƒKƒEƒXj‚©‚ç‚Tƒ~ƒŠƒeƒXƒ‰i50ƒKƒEƒXj‚Ì–\˜I‚ł͈Ùí‚Í‚È‚¢B@

4
j.J. L. Kirschvink;@
Microwave Absorption by Magnetite,
@a possible Mechanism for Coupling Nonthermal Levels of Radiation to Biological System@

l‘Ì‚Ì”]‚Ì’†‚Ƀ}ƒOƒlƒ^ƒCƒg‚ª‚ ‚邱‚Æ‚ðŒ©‚¢‚¾‚µ‚½Œ¤‹†ŽÒ‚É‚æ‚é’ñˆÄB@
ƒ}ƒCƒNƒ”g‚̓}ƒOƒlƒ^ƒCƒg‚ª‚ ‚ê‚΂»‚±‚Å‘òŽR‚Ì“d—Í‚ð‹zŽû‚·‚é@
iŒg‘Ñ“d˜b‚ÌŽg—pŽü”g”‚ðŠÜ‚Þ0E5[10‚f‚g‚š‚Å‚Í“Á‚Él—¶‚ª•K—vjB

]—ˆŒ¤‹†‚Í‚±‚Ì“_‚ðl—¶‚µ‚Ä—ˆ‚È‚©‚Á‚½B@
”äŠr“I”÷Žã‚ȃ}ƒCƒNƒ”g“d—̶͂‘̉e‹¿‚̓}ƒOƒlƒ^ƒCƒg‚ª‹Nˆö‚·‚é‚©‚à‚µ‚ê‚È‚¢A¡ŒãŒ¤‹†‚µ‚Ä‚¢‚­‚ׂ«‚Å‚ ‚éB@

—Ⴆ‚Α–Ž¥«‹Û‚Æ‚æ‚΂êƒ}ƒOƒlƒ^ƒCƒg‚ð‘Ì“à‚ÉŠÜ‚Þ”÷¶•¨‚ÆAŽ¥‹C‚ðŠÜ‚Ü‚È‚¢”÷¶•¨‚Ƀ}ƒCƒNƒ”g‚ðˆó‰Á‚µ‚ÄA‚c‚m‚`“™‚̕ω»‚𒲂ׂ½‚è‚·‚ê‚ÎA‘Ì“à‚̃}ƒOƒlƒ^ƒCƒg‚ª“dŽ¥”g‰e‹¿‚ÌŠî‚É‚È‚Á‚Ä‚¢‚é‚©”Û‚©‚ª‚í‚©‚é‚Í‚¸B@

5.
j C. K. Chou et al;@
Radio Frequency Electromagnetic Exposure: Tutorial Review on Experimental Dosimetry.

‚q‚eŽü”g”‚Ì“dŽ¥”g–\˜I‚ÉŠÖ‚·‚郌ƒrƒ…[B@

‘l‚Ȃǂ̬“®•¨‚É“dŽ¥ŠE‚ðˆó‰Á‚µ‚ĉe‹¿“x‚̃eƒXƒg‚ð‚·‚é‚±‚Æ‚ª‘½‚¢B@
‚±‚Ìê‡A‘l‚ÌŽp¨E“®‚«‚É‚æ‚Á‚Ä‘l‚̎󂯂é‚r‚`‚q‚Í“dŽ¥ŠE‚Æ‘ÌŽ²‚Æ‚ÌŠÖŒW‚Å‘å‚«‚­•Ï“®‚µA20”{‚à•Ï‰»‚·‚éA@

ˆê’è‚Ì–\˜I—Ê‚ð—^‚¦‚邱‚Æ‚Í•s‰Â”\‚É‹ß‚¢Bˆê’è‚Ì–\˜I—Ê‚É‚·‚éˆ×‚É‘l‚ÌŽp¨‚ðS‘©‚·‚ê‚ÎA‚±‚ÌS‘©‚ªƒXƒgƒŒƒX‚Æ‚È‚Á‚Ăǂ̂悤‚ȉe‹¿‚ª‚Å‚é‚©‚í‚©‚ç‚È‚¢B@
‚±‚¤‚µ‚½“_‚àŒ¤‹†Žž‚É’ˆÓ‚·‚ׂ«B@

Å‹ß‚ÌŒ¤‹†‚É‚æ‚Á‚ÄAœ‚Ì“d‹C“I“Á«‚ª]—ˆ‚Ì’l‚ƈقȂÁ‚Ä‚¢‚邱‚Æ‚ª‚í‚©‚Á‚Ä‚«‚½B@
]—ˆ‚Ì”Žš‚Å‚Í‚q‚e”g‚ɑ΂·‚éƒhƒVƒƒgƒŠ[‚ÌŒ¤‹†Œ‹‰Ê‚ªA‰ß‘å‚ÉŒµ‚µ‚­•]‰¿‚³‚ê‚Ä‚¢‚½‰Â”\«‚à‚ ‚éB‚ÆB@

iŒg‘Ñ“d˜b“™‚̈À‘S«‚ÌŒ¤‹†‚ÉŠÖ˜AAí‚ÉÅV‚ÌŒ¤‹†‚Å‚Í]—ˆ‚Ì–\˜IŠî€‚©‚ç‚æ‚茵‚µ‚¢•ûŒü‚ɉü³‚³‚ê‚éŒXŒü‚É‚ ‚邪A
‚±‚ÌŒ¤‹†‚É‚æ‚ê‚ÎAŠÉ˜a‚³‚ê‚é‰Â”\«‚àŽc‚µ‚Ä‚¢‚éA‚±‚Æ‚É‚È‚éBj@@

6
j Jon Reitan et al;@
High-Voltage Overhead Power lines in Epidemiology: Patterns of Time Variations in Current Load and Magnetic Fields.
@

ƒmƒ‹ƒEƒF[‚ÌŒ¤‹†B‘—“dü‚Ì‘—“d“d—¬‚Ì”NEŒŽE“ú‚É‚æ‚é•Ï“®‚Í‘å•Ï‘å‚«‚¢B@
ƒIƒXƒŽs‘S‘Ì‚Ì“d—ÍÁ”ï‚̉ߋŽ‚Ì„ˆÚi‰EŒ¨ã‚ª‚è‚É’P’²‚É‘‰Áj‚ɑ΂µ‚ÄA¡‰ñ‚Ì’²¸‚ÅŽæ‚è‚ ‚°‚½ŽR‚Ì•û‚É‚ ‚é”­“dŠ‚©‚ç‚Ì‘—“dü‚ÆAì‚Ì•û‚É‚ ‚é”­“dŠ‚©‚ç‚Ì‘—“dü‚Ì‚»‚ꂼ‚ê‚Ì‘—“d“d—¬‚Ì„ˆÚ‚ÍA‚ ‚é”͈͂őŒ¸‚ðŒJ‚è•Ô‚µ‚Ä‚¢‚éB@

‰uŠw’²¸‚ŃXƒ|ƒbƒg“I‚ÉŽ¥ŠE‚𑪒肵‚Ä‚àA•K‚¸‚µ‚à‘S‘Ì‘œ‚ð”cˆ¬‚Å‚«‚È‚¢B@
–éŠÔ‚Ì‘—“d“d—¬‚Í’‹ŠÔ‚É”ä‚ׂĒႢA‚·‚È‚í‚¿–éŠÔ‚͘R‰kŽ¥ŠE‚ª’ቺ‚·‚éB@
Ž¥ŠE‚ªƒƒ‰ƒgƒjƒ“‚̗ʂɉe‹¿‚µ‚Ä‚¢‚é‚Æ‚¢‚¤Œ¤‹†‚à‚ ‚邪A‚±‚¤‚µ‚½–éŠÔ‚ÌŽ¥ŠE—ʂ̒ቺ‚Æ‚¢‚¤–Ê‚Å‚à‚Ý‚é•K—v‚ª‚ ‚éB@

7
j@Qing-Yu Fan et al ;
Preliminary Report on Treatment of Bone Tumors with Microwave-induced Hyperthermia
@

‚Q‚S‚T‚O‚l‚g‚š‚̃}ƒCƒNƒ”g‚Ìœ‚ÌŠà‚ɑ΂·‚éˆã—Éž—p‚Å—Ç‚¢¬Ñ‚ð”[‚ß‚½B@

8
j E. Khizhnyak et al;@
Temperature Oscillations in Liquid
@Media Caused by Continuous (Non-modulated) Millmeter Wave-length Electromagnetic irradiation. @

‚T‚W[‚V‚W‚f‚g‚š‚Æ‚¢‚¤ƒ~ƒŠ”g‚ð”|—{‰t‚ÉÆŽË‚µ‚½‚Æ‚±‚ëA”|—{‰t‚̉·“x㸂͒Pƒ‚Å‚Í‚È‚­Aã¸E‰º~‚ðŒJ‚è•Ô‚·”­UŒ»Û‚ð

’悵‚½‚è‚·‚éꇂª‚ ‚邱‚Æ‚ª‚í‚©‚Á‚½B@
“d—Í‚âŽü”g”‚Ì‘‹Œø‰Ê‚©‚à‚µ‚ê‚È‚¢‚Æ‚¢‚í‚ê‚Ä‚¢‚éŽÀŒ±Œ‹‰Ê‚Í‚±‚¤‚µ‚½‰·“x㸂̈Ù킳‚É‹Nˆö‚·‚é‚©‚à‚µ‚ê‚È‚¢B@

9
j@J. Blondin et al;@
Human Perception of Electric Fields and Iron Currents Associated with High-Voltage DC Transmission Lines.
@

ƒJƒiƒ_‚ÅŒv‰æ‚³‚ê‚Ä‚¢‚é’¼—¬‚Ì‚ˆ³‘—“dü‚Ì“dŠE‚ÉŠÖ‚µ‚ÄAƒ{ƒ‰ƒ“ƒeƒ@‚ð•å‚Á‚Ä‚Ç‚Ì’ö“x‚Ì“dŠE‹­“x‚Å“dŠE‚ðŠ´’m‚·‚é‚©‚𒲸A@
‘—“dü‚©‚ç‚̃CƒIƒ““d—¬‚àŠÖŒW‚µ‚Ä‚­‚邱‚Æ‚ª‚í‚©‚Á‚½B
Š´‚¶ˆÕ‚¢l‚Í‚P‚O‚‹‚u^‚’ö“x‚ÅŠ´‚¶‚éB@
Š´‚¶‚È‚¢l‚Í‚T‚O‚‹‚u^‚‚Å‚àŠ´‚¶‚È‚¢BŒÂ‘Ì·‚ª‘å‚«‚¢B@
‚±‚ÌŒ¤‹†¬‰Ê‚Í«—ˆ‚̃Jƒiƒ_‚Å‚Ì’¼—¬‚ˆ³‘—“dü‚ÌŒšÝ‚ɖ𗧂Ăç‚ê‚éB@

10
j R. Adair;@
 Didactic Discussion of Stochstic
@Resonance Effects and Weak Signals.

”÷Žã‚È“dŽ¥ŠE‚̉e‹¿‚ªAŒ¤‹†‚É‚æ‚Á‚Ä‚Í‚È‚ºŒŸo‚³‚ꂽ‚èAŒŸo‚³‚ê‚È‚©‚Á‚½‚è‚·‚é‚Ì‚©‚ÉŠÖ‚·‚鉼à‚Ì’ñ¥‚ÆŽv‚í‚ê‚邪A“ï‰ð‚Å—‰ð‚Å‚«‚¸AЉî‚Å‚«‚Ü‚¹‚ñB@

11
j E. Elekes et al;@
Effect on the Immune System of Mice Exposed Chronically to 50 Hz Amplitude-Modulated 2.45 GHz Microwaves.

50Hz
‚Ì‹éŒ`”g‚Å•Ï’²‚µ‚½2E45GHz‚̃}ƒCƒNƒ”g‚ð‘l‚ÉÆŽËB@
0
E1mW/cm2i–ñ20V/m‚Ì“dŠE‹­“xj‚Æ‚¢‚¤”äŠr“I’჌ƒxƒ‹‚ÌÆŽË‚Å‚ ‚邪AƒƒX‘l‚ł͈Ùí‚Í–³‚©‚Á‚½‚ªAƒIƒX‘l‚Å‚ÍPFC/Spleen‚ɉe‹¿‚ªo‚Ä‚¢‚éB@
”äŠr“I’á‚¢ƒ}ƒCƒNƒ”g‚łඑ̉e‹¿‚ª‚ ‚é‚Æ‚¢‚¤•ñB@

(
‚±‚Ì•ñ‘‚Å‚Ì”’l‚ð‚Ý‚ê‚ÎA–{—ˆ‚Ù‚Ú•Ï“®‚Ì‚È‚¢’l‚Å‚ ‚é‚Í‚¸‚̃Rƒ“ƒgƒ[ƒ‹i‘ÎÆŒQj‚̃f[ƒ^‚ª‚Q”{ˆÈã‚É•Ï“®‚µ‚Ä‚¢‚é‚Ì‚ÅAŽÀŒ±Žè–@“™‚É‹^–₪Žc‚éB@–”@‘l‚̃IƒX‚ƃƒX‚Å‚È‚º‰e‹¿‚ªo‚½‚èAo‚È‚©‚Á‚½‚è‚·‚é‚Ì‚©‚í‚©‚ç‚È‚¢B)@

12
j Z. Sciekiewicz et al@
;Prenatal Exposure to a 50 Hz Magnetic
@Field has No Effect on Spatial Learning in Adult Mice.@

‚T‚O‚g‚š‚T‚OƒKƒEƒX‚̳Œ·”gŽ¥ŠE‚ð‘l‚ÉÆŽËB@
”]‚Ì‹@”\‚Ö‚ÌŽ¥ŠE‰e‹¿‚ðŠwK‹@”\‚̕ω»‚ð—˜—p‚µ‚Ä’²¸B@Œ‹‰Ê‚Í–â‘肪–³‚©‚Á‚½B


(
‚R‚à‚P‚Q‚à“¯‚¶Œ¤‹†ŽÒ‚Ì•ñ‚Å‚·BŽ¥ŠE‚É‚æ‚郃‰ƒgƒjƒ“‚̗ʂւ̉e‹¿‚ª•ñ‚³‚ê‚Ä‚¢‚Ü‚·‚ªA”]_ŒoŒn‚É‚Í‚T‚OƒKƒEƒX’ö“x‚̌𗬎¥ŠE‚ł͉e‹¿‚ªŒ»‚ê‚È‚¢‚悤‚Å‚·B)@

•Åƒgƒbƒv‚É–ß‚é

---

 

‚Q‚`D‚a‚d‚l‚r˜_•¶ŽVol.18, No. 8, 1997‚ÉŒfÚ‚³‚ꂽ˜_•¶‚ÌŠT—v

ì¬F1997-4-30@WEBŒöŠJG2014-2-24

 

1j M. Yasui et al: Carcinogenicity Test of 50 Hz Sinusoidal Magnetic Field in Rats.

  OECD‚É‚æ‚Á‚Ä‹K’肳‚ꂽ•û–@‚ÅA50Hz³Œ·”g‚̌𗬎¥ŠE‚ª”­ƒKƒ“«‚ð—L‚·‚é‚©”Û‚©‚ÌŒŸØ‚ðs‚Á‚½B@
5
ƒKƒEƒXA50ƒKƒEƒX‚ÌŽ¥ŠE‚ð5°109T‚ɂ킽‚Á‚ălƒYƒ~‚É”˜˜IB
ƒVƒƒƒ€”˜˜I‚Æ”äŠr‚µ‚ÄA”­ƒKƒ“«‚ÍŒŸoo—ˆ‚È‚©‚Á‚½B

@50ƒKƒEƒX’ö“x‚̌𗬎¥ŠE‚ÍA”­ƒKƒ“«‚Í‚È‚¢‚ÆŒ¾‚¦‚éB

 

2) V. Sollazzo et al: Response of Human MG-63 Osteosarcoma Cell Line and Human Osteoblast-Like Cells to Pulsed Electromagnetic Fields.

@ƒs[ƒN’l23ƒKƒEƒXAŒJ‚è•Ô‚µŽü”g”75HzAƒpƒ‹ƒX•1¥3ms‚ÌŽ¥ŠE‚ð×–E‚Ɉø‰ÁBƒpƒ‹ƒXŽ¥ŠE‚Æ×–E‚ÌŠÖŒW‚ÍA”|—{ðŒ‚É‚æ‚Á‚Ä’˜‚µ‚­•Ï‰»‚·‚éB

  ‚Ü‚½Žg—p‚µ‚½×–E‚ÌŽí—Þ‚É‚æ‚Á‚ÄA‰e‹¿“x‚Í‘å‚«‚­•Ï‰»‚·‚éB@Œp‘±Œ¤‹†‚ª•K—vB

 

3) G. P. Pessina et al: Short Cycles of Both Static and Pulsed Electromagnetic Fields Have No Effect on the Induction of Cytokineses by Peripheral Blood Mononuclear Cells.

  ’¼—¬Ž¥ê30ƒKƒEƒXAƒpƒ‹ƒXŽ¥êiƒs[ƒN30ƒKƒEƒXAŒJ‚è•Ô‚µŽü”g”50HzAƒfƒ…[ƒeƒB”ä0¥4A—§‚¿ã‚ª‚è120ƒiƒm•bA—§‚¿‰º‚ª‚è100ƒ}ƒCƒNƒ•bj ‚ð––½ŒŒ—R—ˆ‚Ì×–E‚Ɉø‰ÁB
ˆø‰Á‚µ‚½Ž¥ŠE‚É‚æ‚Á‚Ä×–E‚̈Ùí‘B‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B

 

4) J. D. Harland et al: Environmental magnetic Fields Inhibit the Antiproliferative Action of Tamoxifen and Melatonin in a Human Breast Cancer Cell Line.

@‰ß‹Ž‚ÌŒ¤‹†‚Ńƒ‰ƒgƒjƒ“‚Ì‘¶Ý‚µ‚È‚¢ðŒ‚Å‚ÍAŽ¥ŠE‚Í×–EiMCF°7j‚̬’·‚ɉe‹¿‚ð—^‚¦‚È‚©‚Á‚½B

@60Hz12ƒ~ƒŠƒKƒEƒX‚Æ‚¢‚Á‚½’á‚¢ƒŒƒxƒ‹‚ÌŽ¥ŠE‚Å‚ÌŒ¤‹†Aƒƒ‰ƒgƒjƒ“‚ð‰Á‚¦‚½×–EŽÀŒ±‚Å‚ÍAŽ¥ŠE‚É‚æ‚Á‚ăƒ‰ƒgƒ“ƒjƒ“‚Ì“®‚«‚ª—}§‚³‚ꂽB

@‚±‚ÌŒ¤‹†‚©‚çAŠÂ‹«‚É‚ ‚鎥ŠE‚ÍA–ò•i‚⃃‰ƒgƒjƒ“‚Ì‹@”\‚ɉe‹¿‚ð—^‚¦‚Ä‚¢‚é‰Â”\«‚ªŽ¦´‚³‚ê‚éB

 

5) E. D. Mantiply et al: Summary of Measured Radio Frequency Electric and Magnetic Fields (10 kHz to 30 GHz) on the General and Work Environment.

@FX‚Ȋ‹«‚Å‚Ì“dŽ¥ŠE‚Ì”˜˜IðŒ‚ð“Z‚ß‚½B

 

6) P. J. Riu et al: A Thermal Model for Human Thresholds of Microwave-Evoked Warmth Sensations.

@10GHzˆÈã‚̃}ƒCƒNƒ”g‚É‚È‚ê‚ÎAl‘Ì‚Ì•\–ʂ̉·“x㸂ªA“dŽ¥”gŒŸ’m‚ÌŒˆ‚ߎè‚É‚È‚éB

 

7) I. L. Beale, et al: Psychological Effects of Chronic Exposure to 50 Hz Magnetic Fields in Humans Living Near Extra-High-Voltage Transmission Lines.

  NZ‚É‚¨‚¯‚é‘—“dü‚Ì‹ß‚­‚ÉZ‚Þl‚ð‘ÎÛ‚Æ‚µ‚½Œ¤‹†A‘—“dü—R—ˆ‚ÌŽ¥ŠEˆÈŠO‚ÌZ–¯‚Ì“dŽ¥”g”˜˜IAEê‚Å‚Ì“dŽ¥”g”˜˜I‚Í–³Ž‹‚µ‚½B
FX‚ȶ‘Ì‹@”\‚̃eƒXƒg‚Å‚ÍŽ¥ŠE‚Ƃ̉e‹¿‚ÍŒ©‚ç‚ê‚È‚¢‚ªAŽ©ŒÈ”»’è‚É‚æ‚鎿–â•\“™‚̉ðÍŒ‹‰Ê‚Å‚ÍA‘—“dü—R—ˆ‚ÌŽ¥ŠE‚Æ‚ÌŠÖ˜A‚ªŒ©‚¦‚éB

 

8) I. Ihrig et al: Alterations of Intercellular Calcium Concentration in Mice Neuroblastoma Cells by Electrical Field and UVA.

  ‰ß‹Ž‚É×–E‚É“dŽ¥”g‚ðˆø‰Á‚µ‚½Žž‚Ì×–E‚©‚ç‚̃Jƒ‹ƒVƒEƒ€—¬o‚ÌŒ¤‹†•ñ‚ªs‚í‚ê‚Ä‚¢‚éB
‚±‚ê‚ç‚ÌŽÀŒ±‚ÍA“dŽ¥”g‚̉e‹¿‚Å‚Í‚È‚­AŽÀŒ±‚ÉŽg—p‚µ‚½ŒuŒõƒ‰ƒ“ƒv‚ÌŽ‡ŠOü‚̉e‹¿‚̉”\«‚ª‘å‚«‚¢B

 

•Åƒgƒbƒv‚É–ß‚é

---



‚Q‚aDBio ElectroMagnetics ˜_•¶Ž@Vol.20 No.3 1999‚ÌŠT—v


1
DM. Repacholi et al: Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs.

WHO
‚Ì‘Û‚d‚l‚eƒvƒƒWƒFƒNƒg‚̃Œƒpƒ`ƒ‡ƒŠ‚ªŠT—v‚ð“Z‚ß‚Ä‚¢‚éB@–{•¶‚¾‚¯‚Å22ƒy[ƒW‚Ì‘åìB
’áŽü”g“dŽ¥ŠE‚ÉŠÖ‚µ‚Ä‚ÍA‹­‚¢“dŽ¥ŠE‹­“x‚ł͉e‹¿‚ª‚ ‚邪A’á‚¢ƒŒƒxƒ‹‚ⶊˆŠÂ‹«‰º‚É‘¶Ý‚·‚é”äŠr“I’á‚¢ƒŒƒxƒ‹‚Ì“dŽ¥ŠE‚̉e‹¿‚ÍA‚Ü‚¾ŠmŒÅ‚½‚é‚à‚Ì‚ª‚È‚¢B
’჌ƒxƒ‹‚Ì’áŽü”g“dŽ¥ŠE‚ÉŠÖ‚µ‚Ä‚ÍAÄŒ»ŽÀŒ±‚ðs‚¤•K—v‚Ì‚ ‚é‚à‚Ì‚à‚ ‚éB
ÃŽ¥ŠE‚ÉŠÖ‚µ‚Ä‚Í2ƒeƒXƒ‰ˆÈ‰º‚Ì‹­“x‚Å‚ÍAŒ’N‰e‹¿‚Í‚È‚¢B

2
DH. Okano et al: Biphasic effects of static magnetic fields on cutaneous microcirculation in rabbits

1mT
i10ƒKƒEƒXj‚ÌÃŽ¥ŠE‚ðƒEƒTƒM‚ÌŽ¨‚É‚ ‚Ä‚½B–•ÁŒŒŠÇ‚ÌŒŒ—¬‚ɕω»‚ªŒ»‚ꂽB
i‚±‚ê‚̓rƒbƒvƒGƒŒƒLƒoƒ“‚ÌŒø‰Ê‚̘_Ø‚Æ‚È‚éHƒrƒbƒvƒGƒŒƒLƒoƒ“‚ÌŠÖŒWŽÒ‚àŽQ‰Á‚µ‚½Œ¤‹†j

3
DF. Cara et al: Different effects of microwave energy and conventional heat on the activity of a thermophillic B-galactosidase from Bacillus acidocaldarius

’Pƒ‚È”M‚ð‰Á‚¦‚½Žž‚ÆA“¯‚¶‰·“x‚É‚È‚é‚悤‚ɧŒä‚µ‚Ä10.4GHz‚̃}ƒCƒNƒ”g“dŠE‚ðˆó‰Á‚µ‚½Žž‚Æ×–E‚ɕω»‚ª‚ ‚é‚©‚𒲂ׂ½B
“dŽ¥ŠE‚É‚æ‚éSAR‚Í1.1W/kg‚Æ1.7W/kg‚Å‚ ‚éB
“dŽ¥ŠE‚̉e‹¿‚ªŒ»‚ꂽB
i“dŽ¥ŠE‚Å”M‚ª”­¶‚µ‚Ä‚à‚»‚ê‚ð‹­§“I‚É—â‹p‚µ‚ĉº‚°‚Äs‚¤ƒeƒXƒg‚ÅA”ñ”MŒø‰Ê‚ÌŽÀŒ±j

4
DM. Mattei et al: Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cell in vitro.

2.3mT
‚ÌŽ¥ŠEA75Hz‚ÌŒJ‚è•Ô‚µŽü”g”Aƒpƒ‹ƒXŽ¥ŠE‚ð×–E‚Ɉó‰ÁB×–E‚ɉe‹¿‚ª‚Å‚½B
i‚±‚ÌŽž‚ÌdB/dt‚Í‚Ç‚Ì’ö“x‚©?@ƒpƒ‹ƒXŽ¥ŠE‚Ì—§‚¿ã‚ª‚è‚Æ—§‚¿‰º‚ª‚è‚ÌŽž‚ÌŽ¥ŠE‚ÌŽžŠÔ•Ï‰»‚ÅA×–E‚É‚Ç‚Ì’ö“x‚Ì—U“±“d—¬‚ª—¬‚ꂽ‚Ì‚©?@˜_•¶‚É‚Í‚»‚Ì‹LÚ‚ª‚È‚¢Bj

5
DW. Pickard et al: Simplified model and measurement of specific absorption rate distribution in a culture flask within a transverse electromagnetic mode exposure system.

“dŽ¥ŠE–\˜I‚É‚ ‚½‚Á‚ÄAƒtƒ‰ƒXƒR‚â×–E‚ð“ü‚ꂽ—n‰t‚È‚Ç‚Ì“d‹C“I‚È“Á«‚ð\•ª‚ɉÁ–¡‚µ‚Ä‚Ç‚Ì’ö“x‚Ì“dŽ¥ŠEASAR‚ªˆó‰Á‚³‚ê‚Ä‚¢‚é‚©‚ð•]‰¿‚µ‚È‚¢‚ÆA‚¢‚¯‚È‚¢@‚Æ‚¢‚¤‚±‚Æ‚ð’ñ¥B
“ï‰ð‚Å—‰ð‚Å‚«‚¸B

6
DM. Bier et al: Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells.

’´“ï‰ðA‰½‚̘_•¶‚©‚à‚í‚©‚ç‚È‚¢B
Electroporesg
‚ÍŽ«‘‚ÉÚ‚Á‚Ä‚¢‚È‚­AˆÓ–¡•s–¾B

 

 

•Åƒgƒbƒv‚É–ß‚é

---



‚RD‚a‚‰‚@‚d‚Œ‚…‚ƒ‚”‚’‚‚‚‚‡‚Ž‚…‚”‚‰‚ƒ‚“@‚u‚‚ŒD‚Q‚O@‚m‚D‚W ‚c‚d‚bD ‚P‚X‚X‚X”N ˜_•¶Ž‚ÌŠT—v

 

1jH. A. Kues at al:
Absence of ocular effects after either single or repeated exposure to 10mW/cm2 from a 60 GHz CW source
ƒEƒTƒM‚Ì–Ú‚É60‚f‚g‚š‚Ì“dŽ¥ŠE‚ð–\˜IA•Ð–Ú‚É“dŽ¥”gA‘¼•û‚̓Rƒ“ƒgƒ[ƒ‹‚Æ‚µ‚Ä”äŠr‚Ì‘ÎÛ‚Æ‚µ‚½B Œ‹‰Ê‚Æ‚µ‚Ä‚ÍA‰e‹¿‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B

‚Q) M. Crasson et al:  @
50 Hz magnetic fields exposure influence on human performance and pyschophysiological parameters: two double blind exposure studies.
ƒqƒg‚É‚T‚O‚g‚š@‚P‚O‚OƒÊ‚s‚ÌŽ¥ŠE‚ðˆó‰ÁA“ª•”‚ÉŽ¥ŠE‚ðˆó‰ÁB “ñd–ÓŒŸ–@‚ÅŽŽŒ±B@“¯Žž‚É”]‚â¸_‚Ì‹@”\‚𑪒è‚Å‚«‚éFX‚ȃeƒXƒg‚ðs‚¢AŽ¥ŠE‚Ì–\˜I‚Å‚»‚¤‚µ‚½‹@”\‚ɉe‹¿‚ªo‚½B@@i“ï‰ð‚Å‹@”\ƒeƒXƒg‚Ì•û–@‚È‚Ç‚ª‚æ‚­‚í‚©‚ç‚È‚¢Bj@

‚R) E. Schienfold et al:
Magnetic fields exposure assessment: A comparision of Various Methods.
Long Island
‚ÌŽ¥ŠE‚Æ“û‚ª‚ñ‚ÌŠÖŒW‚Ì—\”õŒ¤‹†B@31–¼‚Ì“û‚ª‚ñ‚É‚È‚Á‚Ä‚¢‚È‚¢—«‚ð‘ÎÛ‚ÉAŽ©‘î‚Å‚Ì24ŽžŠÔŽ¥ŠE‘ª’èAƒƒCƒ„[ƒR[ƒhAÚ’n“d—¬A24ŽžŠÔŒÂl–\˜I‚Ȃǂ𒲸B@
’˜ŽÒ‚Í24ŽžŠÔŒÂl–\˜I‚ÆŽ©‘î‚Å‚ÌŽ¥ŠE‹­“x‚É‘ŠŠÖ‚ª‚Æ‚ê‚Ä‚¢‚é‚Æ‚¢‚Á‚Ä‚¢‚éB@

i‚µ‚©‚µAŽÀۂ̃f[ƒ^‚ðŒ©‚é‚ÆŽ„‚Ì–Ú‚É‚Í‘ŠŠÖ‚Í”–‚¢‚ÆŒ©‚¦‚éBj@‰Æ’ë‚Å‚ÌŽ¥ŠE‚É‚ÍAŒð—¬“dŒ¹‚©‚çÚ’nü‚Ö˜R‰k‚·‚é“d—¬’l‚ª‘å‚«‚ȉe‹¿‚ð‚à‚Á‚Ä‚¢‚éB@‚±‚ÌÚ’nü“d—¬‚ÍAŽ¥ŠE‚Æ“û‚ª‚ñ‚ÌŒ¤‹†‚É·‚èž‚ÞB@

‚S) K. W. Linz et al:@
Membrane potential and currents of isolated heart muscle cells exposed to pulsed radio frequency fields.
@
×–EƒŒƒxƒ‹‚ÌŒ¤‹†B900MHz‚Æ1800MHz‚̃}ƒCƒNƒ”giŒg‘Ñ“d˜b‚Ì“d”g‚ð‘z’èjA“d—Í‚Í80mW/kg‚©‚ç880mW/kgB’ZŽžŠÔ–\˜I‚Å‚ ‚éB@”ñ”MŒø‰Ê‚̗̈æ‚ð‘_‚Á‚½Œ¤‹†B@
Œ‹‰Ê‚Æ‚µ‚Ä‚ÍA’áSAR‚Å‚à‚SAR‚Å‚à‹¤‚ɉe‹¿‚ÍŒ©‚ç‚ê‚È‚¢B @

‚T) K. Andrews and D. Savitz:@
Accuracy of industry and occupation on death certification of electric utility workers: Implications for Epidemiologic studies of magnetic fields and cancer.
@
Ž€–SØ–¾‘‚Ìî•ñ‚É‚æ‚é‰uŠw‚ÆAŽÀÛ‚Ì–\˜IðŒ‚Ȃǂ𸸂µ‚½B@
Ž€–SØ–¾‘‚É‹LÚ‚³‚ꂽŽ–€‚ðŠî‚É“dŽ¥ŠE–\˜I—Ê‚ð„’肵‚Äs‚¤‰uŠw’²¸‚Å‚ÍA\•ª‚ÈŒ¤‹†¬‰Ê‚ª“¾‚ç‚ê‚È‚¢B@
i‰ß‹Ž‚ÌŒ¤‹†‚ÉAŽ€–SØ–¾‘‚Ìî•ñ‚ÉŠî‚¢‚ÄJob|Exposure Metrics‚ð쬂µ‚Äs‚Á‚½“d‹CŠÖ˜A‚ÌE‹Æ]Ž–ŽÒ‚̓Kƒ“‚̃ŠƒXƒN‚ª‚‚¢‚Æ‚¢‚¤Œ¤‹†‚à‚ ‚邪A‚»‚ê‚ç‚ÍM—Š«‚ÉŒ‡‚¯‚é‚Æ‚¢‚¤‚±‚Æ‚©Hj @

‚U) H. Miki et al: @
Effects of environmental level magnetic field exposure on transcription of CMV immediate early promoter DNA in
@a cell-free in vitro transcription system. @
‚U‚O‚g‚šŽ¥ŠEA‚P‚OƒÊ‚s‚©‚ç‚P‚O‚OƒÊ‚s‚ð–\˜IA‚q‚m‚`‚̇¬‚ɉe‹¿‚ÍŒ©‚ç‚ê‚È‚¢B@

•Åƒgƒbƒv‚É–ß‚é

---

 

‚R‚`D‚a‚‰‚@‚d‚Œ‚…‚ƒ‚”‚’‚‚‚‚‡‚Ž‚…‚”‚‰‚ƒ‚“@‚u‚‚ŒD‚Q‚P@‚m‚D‚R ‚`‚‚’‚‰‚Œ ‚Q‚O‚O‚O ˜_•¶Ž‚ÌŠT—v

‚Pj@Z. J. Sienkiewicz et al: Low-level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a special leaning task in mice.@

‚Q‚O‚O‚O”N‚PŒŽ†‚É‹LÚ‚³‚ꂽ‚k‚‚‰‚ÌŒ¤‹†‚Ƒ΂ð‚È‚·Œ¤‹†i‚r‚`‚q‚Í”ñ”MŒø‰Ê‚Æ‚¢‚í‚ê‚é”͈͂ł ‚邪A‚±‚ÌŒ¤‹†‚æ‚è‚Í‘å‚«‚¢‚r‚`‚q‚ð‘l‚É–\˜IA”]‚Ì‹L‰¯—͂ɉe‹¿‚ªo‚Ä‚¢‚éj‚Æ‚¢‚¦‚éB
‚X‚O‚O‚l‚g‚š‚̃fƒWƒ^ƒ‹Œg‘Ñ“d˜b‚Ì•ûŽ®‚Ì“dŽ¥ŠE‚ð‚Ë‚¸‚Ý‚É–\˜IA‚r‚`‚q‚Í‚OD‚O‚T‚v^‚‹‚‡‚ÆAŽÀÛ‚ÌŒg‘Ñ“d˜b‚Ì“d—Í‚É‹ß‚¢’á‚¢‚r‚`‚q‚Ì“dŽ¥ŠE‚ð–\˜I‚³‚¹‚½B‚±‚Ìꇂ͂˂¸‚Ý‚Ì”]‚Ì‹L‰¯—͂ɉe‹¿‚Ío‚È‚©‚Á‚½B@

‚QjJ. R. Jauchem et al: Cardiovascular and thermal effects of microwave irradiation at 1 and/or 10 GHz in anesthetized rats.

l‚Ì“dŽ¥ŠE–\˜I‚Í’Pˆê‚ÌŽü”g”‚¾‚¯‚Å‚Í‚È‚­A“¯Žž‚É•¡”‚Ì“dŽ¥ŠE‚É–\˜I‚µ‚Ä‚¢‚éB‚»‚±‚Å“¯Žž‚É‚P‚f‚g‚š‚Æ‚P‚O‚f‚g‚š‚Ì“dŽ¥ŠE‚ð–\˜I‚µ‚½Žž‚ÉA‘l‚ɉ½‚©‹N‚±‚é‚©ƒeƒXƒg‚µ‚½B@Œ‹‰Ê‚Í’PˆêŽü”g”–\˜I‚É”ä‚ׂÄA•¡”‚Ì“dŽ¥ŠE–\˜I‚Å‚ÍA“ÁˆÙ‚ÈŒ»Û‚ÍŒ©‚‚©‚ç‚È‚©‚Á‚½B@@

‚RjM. A. Stuchly et al: Inter-laboratory comparison of numerical Dosimetry for human exposure to 60 Hz electric and magnetic fields.@

 
‚T‚O‚g‚š“dŽ¥ŠE‚Ì–\˜I‚ɑ΂µ‚Äl‚ª‚Ç‚Ì’ö“x‚̉e‹¿‚ðŽó‚¯‚é‚©ƒhƒVƒƒgƒŠ[‚ÌŒ¤‹†‚ª·‚ñ‚Å‚ ‚éB@‚±‚̂悤‚ÈŒ¤‹†‚ðs‚Á‚Ä‚¢‚錤‹†ŠŠÔ‚ÅA‰ðÍŒ‹‰Ê‚É·ˆÙ‚ª‚ ‚é‚©ŒŸ“¢‚µ‚½B­‚µˆÙ‚È‚é“_‚ª‚ ‚邱‚Æ‚ª”»‚Á‚½B

‚SjA. Wieraszko: Dantrolene modulates the influence of steady magnetic fields on hippocampal evoked potentials in vitro.

 
’¼—¬Ž¥ŠE@‚Q|‚Rƒ~ƒŠƒeƒXƒ‰‚ª‰½‚©‚ɉe‹¿‚ð—^‚¦‚Ä‚¢‚é‚Æ‚¢‚¤Œ¤‹†A“ï‰ð‚Å—‰ð‚Å‚«‚¸B


‚TjS. Ichioka et al: High-intensity static magnetic fields modulate skin microcirculation and temperature in vivo.@

 
@‘l‚É‚WƒeƒXƒ‰‚Æ‚¢‚¤‹­‚¢’¼—¬Ž¥ŠE‚ð–\˜IAŒŒ—¬‚ɉe‹¿‚ªo‚½‚ªA‰Â‹t“I‚ȕω»‚ÅAŽ¥ŠE–\˜I‚©‚ç—£‚ê‚é‚ÆŒ³‚É‚à‚Ç‚éB

‚UjL. A. Coulton et al: The effects of static magnetic fields on the rate of calcium/calmodulin-dependent phosphorylation of myosin light chain.

‚c‚b@‚O|‚Q‚O‚OƒÊ‚si‚QƒKƒEƒXj‚Ì’¼—¬Ž¥ŠE‚ð×–E‚É–\˜IB‰ß‹Ž‚És‚í‚ꂽŒ¤‹†‚Å‚ÍA‚±‚ÌŽ¥ŠE‚ŕω»‚ªŒ»‚ꂽB@‰ß‹Ž‚És‚Á‚½Œ¤‹†ŽÒ‚Æî•ñŒðŠ·‚ðs‚¢‚È‚ª‚çAÄŒ»ŽÀŒ±‚ðs‚Á‚½‚ªA•Ï‰»‚ÍŒŸo‚Å‚«‚¸AÄŒ»ŽÀŒ±‚ÉŽ¸”s‚µ‚½B

‚VjW. T. Kaune et al: Rate of occurrence of transient magnetic field events in U.S. residents.

ƒAƒƒŠƒJ‚ÌZ‘î‚ÅA‰ß“n“I‚ÈŽ¥ŠE‚ð‚Ç‚Ì’ö“xŽó‚¯‚Ä‚¢‚é‚©A‰Æ’ë‚É’u‚©‚ê‚é“d‹C‹@Ší‚©‚ç‚Ì•úŽË‚Å‚Í‚È‚­A“Á‚ɤ—pŽü”g”“dŒ¹‚É’…–Ú‚µ‚ÄŽÀ‘ª‚³‚ꂽB@‚P‚Q‚O‚g‚š‚â‚P‚W‚O‚g‚š‚ÌŽ¥ŠE‚ª‘½‚¢B@‚±‚ê‚ÍÆ–¾‚Ì’²ŒõƒVƒXƒeƒ€‚Ì“®ì‚É‚æ‚é‚à‚Ì‚ÆŽv‚í‚ê‚éB

‚WjW. T. Kaune et al: Childrenfs exposure to magnetic fields produced by US television sets used for viewing programs and playing video games.

‚s‚u‚ðŽ‹’®‚µ‚Ä‚¢‚鎞‚ÆA‚s‚uƒQ[ƒ€‚ð‚µ‚Ä‚¢‚鎞‚ÉAŽq‹Ÿ‚ª‚Ç‚Ì’ö“x‚ÌŽ¥ŠE‚ð—‚Ñ‚Ä‚¢‚é‚©’²¸B@‚s‚u‚ðŒ©‚Ä‚¢‚鎞‚Ì‚d‚k‚eŽ¥ŠE‚ÍA‚OD‚O‚O‚Xƒ}ƒCƒNƒƒeƒXƒ‰i‚OD‚O‚Xƒ~ƒŠƒKƒEƒXjA‚s‚uƒQ[ƒ€‚ð‚µ‚Ä‚¢‚鎞‚Ì‚d‚k‚eŽ¥ŠE‚Í‚OD‚O‚Q‚Rƒ}ƒCƒNƒ‚si‚OC‚Q‚Rƒ~ƒŠƒKƒEƒXj‚Å‚ ‚Á‚½B

‚XjT. Ikehara et al: Effects on RH+(k+) uptake of HeLa cells in a high K+ medium of exposure to a Switched 1.7 Tesla magnetic field.

‚PD‚VƒeƒXƒ‰i‚P‚V‚O‚O‚OƒKƒEƒXj‚Ì’¼—¬Ž¥ŠE‚ð‚n‚Ž@‚n‚†‚†‚µ‚½ƒeƒXƒgB@×–EƒŒƒxƒ‹‚ÌŒ¤‹†B@“ï‰ð‚Å—‰ð¢“ïB@i‘å‚«‚È—U“±“d—¬‚ª—¬‚ê‚é‚̂ʼn½‚©‰e‹¿‚ª‚ ‚Á‚Ä‚à—Ç‚¢ŽÀŒ±ðŒ‚Å‚ ‚éBj

‚P‚OjW. Sontag: Modulation of cytokine production by interferential current in differential HL-60 cells.

 
‚S‚‹‚g‚š‚`‚l•Ï’²‚Ì“d—¬‚ð×–E‚É—¬‚·B@‚QD‚T‚`^‚‚Q‚Ì—U“±“d—¬‚ª—¬‚ꂽŽž‚ÉA‘å‚«‚È×–E‚̖Ɖu‹@”\‚ɕω»‚ª‚Å‚½B@”|—{ðŒ‚ʼne‹¿‚͈قȂéB@i—U“±“d—¬‚ª‚P‚O‚O‚‚`^‚‚Q‚ð’´‚¦‚é‚Æ“dŽ¥”g‚̉e‹¿‚ªo‚Ä‚­‚錤‹†‚ª‘½‚¢‚Ì‚ÅA‚±‚ê‚à•Ï‰»‚ª‚ ‚Á‚Ä“–‘R‚ÌŒ¤‹†‚Æ‚¢‚¦‚éBj

•Åƒgƒbƒv‚É–ß‚é

---

 

‚SD‚a‚‰‚@‚d‚Œ‚…‚ƒ‚”‚’‚‚‚‚‡‚Ž‚…‚”‚‰‚ƒ‚“ ‚u‚‚ŒD‚Q‚P@‚m‚D‚W@‚c‚…‚ƒD‚Q‚O‚O‚O˜_•¶Ž‚ÌŠT—v

@@@@@@@ì¬F@‚Q‚O‚O‚P|‚P|‚R‚P@
‚a‚d‚l‚r˜_•¶Ž‚ÌŠT—v‚Å‚·B

‚PjA. Libiff et al: New Model for Avian Magnetic Compass
’¹—Þ‚ÌŽ¥‹CƒRƒ“ƒpƒX‚͂ǂ̂悤‚ÈŒ´—‚Å‚ ‚é‚©H@’nŽ¥‹C‚Æ“dŠE¬•ª‚𒹂̒†‚É‚ ‚éƒ}ƒOƒlƒ^ƒCƒgi¶•¨Ž¥Îj‚ÅŠ´‚¶AƒCƒIƒ“‚Ì‹¤–ÂŒ»Û‚©‚ç’nŽ¥‹C‚𔻒肵‚Ä‚¢‚é‚Ì‚Å‚Í‚È‚¢‚©A‚Æ‚¢‚¤‰¼Ý‚Ì’ñˆÄB

‚QjM. Bornhausen et al: Prenatal Exposure to 900 MHz, Cell-Phone Electromagnetic Fields Had No Effects on Operant-Behavior Performance of Adult Rat.
e‘l‚ÉŽq‘l‚ª¶‚Ü‚ê‚é‘O‚Ì”DP‚Ìó‘Ô‚Å‚X‚O‚O‚l‚g‚šŒg‘Ñ“d˜b‚Ì“d”g‚É‘Š“–‚·‚é“dŽ¥”g‚𔘘I‚³‚¹‚½B@”˜˜I‹­“x‚Í‚OD‚P‚‚v^‚ƒ‚‚Q‚ÆŒg‘Ñ“d˜b‚Ì’†Œp“ƒ‚©‚çlŠÔ‚ªŽó‚¯‚é‹­“x‚Æ‚µ‚½B@¶‚܂ꂽŽq‘l‚Ìs“®‚É‚ÍA“dŽ¥”g‚̉e‹¿‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B

‚RjJ. Gray et al: In Vivo Enhancement of Chemotherapy With Static Electric or Magnetic Fields.
‘l‚É”­Šà•¨Ž¿‚ð“Š—^B@‚»‚Ì•”•ª‚É‚P‚T‚j‚u‚Ì“dˆ³‚ðˆó‰Á‚µ‚½‹à‘®ƒvƒŒ[ƒg‚ð’u‚«A‚Pj5•bŠÔŠu‚Ńvƒ‰ƒX‚P‚T‚j‚u‚©‚çƒ}ƒCƒiƒX‚P‚T‚j‚uA‚»‚µ‚ăvƒ‰ƒX‚P‚T‚j‚u‚ƕω»‚³‚¹‚½A‚Qj˜A‘±‚Å‚S‚T‚O‚‹‚u/‚‚Ì“dŠE‚ðˆó‰ÁA‚Rj‚P‚P‚O‚‚si‚P‚P‚O‚OƒKƒEƒXj‚Ì’¼—¬Ž¥ŠE‚𔘘I‚³‚¹‚½B@Œ‹‰Ê‚ÍŠà‚ð—}§‚µ‚½B@“dŽ¥ŠE‚É‚ÍŠà—}§ì—p‚ª‚ ‚éB

‚SjY. Nakaoka et al: Effect of a 60 Hz Magnetic Field on the Behavior of Performance.
60
‚g‚š‚ÌŽ¥ŠE‚ðƒ]ƒEƒŠƒ€ƒV‚É”˜˜IB@ƒ]ƒEƒŠƒ€ƒV‚ÍŠO•”ŠÂ‹«‚̕ω»‚É”ñí‚É•qŠ´‚É”½‰ž‚·‚éB@Œ‹‰ÊA‚S‚O‚O‚OƒKƒEƒX‚ð’´‚¦‚é‚ƃ]ƒEƒŠƒ€ƒV‚Ìs“®‚ɕω»‚ªo‚½B@

‚TjA. Maes et al: Cyrogenetic Effects of 50Hz Magnetic Fields of Different Magnetic Flux Densities.
‚T‚O‚g‚š‚ÌŽ¥ŠE‚É×–E‚𔘘IB‚U‚Rƒ}ƒCƒNƒƒeƒXƒ‰‚©‚ç‚Q‚T‚O‚Oƒ}ƒCƒNƒƒeƒXƒ‰‚É”˜˜I‚³‚¹‚½B@Œ‹‰Ê‚ÍA‚c‚m‚`‚ɕω»‚Í–³‚©‚Á‚½B

‚UjV. Veiga et al: Cellular Damage and Altered Carbohydrate Expression in P815 Tumor Cells Induced by Direct Electric Current: An In Vitro Analysis.
‚c‚b‚Qm‚`‚𗬂·‚±‚Æ‚ÅŠàŽ¡—Âɖ𗧂‰”\«‚ª‚ ‚éB@‚c‚b‚Ì“d‹É‚̃Jƒ\[ƒh‘¤‚ƃAƒm[ƒh‘¤‚Å‚ÍŒø‰Ê‚ªˆÙ‚È‚Á‚½B

‚VjP. Galloni et al: Effects of 50 Hz Magnetic Fields Exposure on Tumor Experimental Models.
Ž¥ŠE50‚g‚š‚Q‚‚si‚Q‚OƒKƒEƒXj‚ð‘l‚É”˜˜IAŠà‚Ì‘”­‚Í–³‚©‚Á‚½B@ƒ|ƒWƒeƒuƒRƒ“ƒgƒ[ƒ‹‚Æ‚µ‚Äs‚È‚Á‚½‚wüÆŽË‚Å‚ÍAŠà‚Í‘”­‚µ‚½B

•Åƒgƒbƒv‚É–ß‚é

---

 

 

‚S‚`DBio ElectromagneticsŽ2008”N1†‚ÉŒfÚ‚³‚ꂽ9Œ‚̘_•¶‚ÌŠT—v‚Æ‚»‚ÌŒXŒü@

‹L2008-4-16@WEB‚Ö‚ÌŒöŠJF2014-11-25
ŠT—v‚ÌŠT—v‚¾‚¯‚Í‹L“ü‚µ‚½B
‰A«Œø‰ÊE—z«Œø‰ÊEŽÀ‘Ô’²¸‚È‚Ç‚ªs‚í‚ê‚Ä‚¢‚éB—z«Œø‰Ê‚¾‚¯‚ª”­•\‚³‚ê‚Ä‚¢‚é‚Ì‚Å‚Í‚È‚¢B
—z«Œ¤‹†F“dŽ¥ŠE‚͈«‰e‹¿‚ð‹y‚Ú‚·@‚Æ‚¢‚¤Œ‹‰Ê‚ÌŒ¤‹†
‰A«Œ¤‹†F“dŽ¥ŠE‚͈«‰e‹¿‚ð‹y‚Ú‚³‚È‚¢@‚Æ‚¢‚¤Œ‹‰Ê‚ÌŒ¤‹†
’†«Œ¤‹†F“dŽ¥ŠE‚ÌŽÀ‘Ô‚âA”˜˜I•]‰¿‚ÌÚׂȂǂ̌¤‹†@@‚É•ª—Þ‚·‚éB

ŠÖS‚Ì‚ ‚é‚©‚½‚ÍAŒ´•¶‘S•¶‚ð“üŽè‚µ‚Ä“Ç‚ñ‚Å‚­‚¾‚³‚¢B

1
FŒg‘Ñ“d˜bGSMŽÀ‹@‚ðŽg—p‚µ‚½ŽÀŒ±A”]”gEEG‚̃Aƒ‹ƒtƒ@”g‚ɉe‹¿@@@—z«Œ¤‹†
ƒ^ƒCƒgƒ‹FThe effect of mobile phone electromagnetic fields on the alpha rhythm of human electroencephalogram
ƒqƒg‚Ì”]”gEEG‚̃¿”g‚Ö‚ÌŒg‘Ñ“d˜b“dŽ¥”g‚̉e‹¿
Œ¤‹†ŽÒFR.J. Croft ‚ç

ŠT—vFMobile phones (MP) emit low-level electromagnetic fields that have been reported to affect neural function in humans; however, demonstrations of such effects have not been conclusive.
The purpose of the present study was to test one of the strongest findings in the literature; that of increased alpha power in response to MP-type radiation.
Healthy participants (N = 120) were tested using a double-blind counterbalanced crossover design, with each receiving a 30-min Active and a 30-min Sham Exposure 1 week apart, while electroencephalogram (EEG) data were recorded.
Resting alpha power (8-12 Hz) was then derived as a function of time, for periods both during and following exposure.
Non-parametric analyses were employed as data could not be normalized.
Previous reports of an overall alpha power enhancement during the MP exposure were confirmed (relative to Sham), with this effect larger at ipsilateral than contralateral sites over posterior regions.
No overall change to alpha power was observed following exposure cessation; however, there was less alpha power contralateral to the exposure source during this period (relative to ipsilateral).
Employing a strong methodology, the current findings support previous research that has reported an effect of MP exposure on EEG alpha power.

2
FP11-19:Œg‘Ñ“d˜b‚ÉŠÖ‚µ‚ă{ƒ‰ƒ“ƒeƒBƒA‚É‚æ‚錤‹†AƒZƒbƒgƒAƒbƒv‚É‚æ‚Á‚Ä‹ÇŠ“I‚ÈSAR‚ªˆÙ‚È‚éB’†«Œ¤‹†
ƒ^ƒCƒgƒ‹FDosimetric evaluation and comparison of different RF exposure apparatuses used in human volunteer studies
ƒqƒg‚̃{ƒ‰ƒ“ƒeƒBƒAŒ¤‹†‚É‚æ‚é‚Žü”g“dŽ¥”g”˜˜I‘•’u‚̈Ⴂ‚É‚æ‚锘˜I•]‰¿‚Æ‚»‚Ì”äŠr
Œ¤‹†ŽÒFClémentine M. Boutry ‚ç

ŠT—vFThe aim of this study was to provide the information necessary to enable the comparison of exposure conditions in different human volunteer studies published by the research groups at the Universities of Turku, Swinburne, and Zurich.
The latter applied a setup optimized for human volunteer studies in the context of risk assessment while the first two applied a modified commercial mobile phone for which detailed dosimetric data were lacking.
While the Zurich Setup exposed the entire cortex of the target hemisphere, the other two setups resulted in only very localized exposure of the upper cheek, and concentrated on a limited area of the middle temporal gyrus just above the ear.
The resulting peak spatial SAR averaged over 1 g of the cortex was 0.19 W/kg of the Swinburne Setup, and 0.31 W/kg for the Turku Setup, compared to 1 W/kg for the Zurich Setup.
The average exposure of the thalamus was 5% and 9% of the Zurich Setup results for the Swinburne and Turku Setups, respectively. In general, the phone-based setup results in only reasonably defined exposures in a very limited area around the maximum exposure; the exposure of the rest of the cortex was low, and may vary greatly as a function of the setup, position, and local anatomy.
The analysis confirms the need for a carefully designed exposure setup that exposes the relevant brain areas to a well-defined level in human volunteer studies, and shows that studies can only be properly compared and replicated if sufficiently detailed dosimetric information is available.

3
FP20-28Fƒmƒ‹ƒEƒF[‚É‚¨‚¯‚é50HzŽ¥ŠE‚ÌŽÀ‘Ô’²¸A“~‚Ì“¹˜Hã‚Å9mG@@’†«Œ¤‹†
ƒ^ƒCƒgƒ‹FELF-magnetic flux densities measured in a city environment in summer and winter
‰Ä‚Æ“~‚É‚¨‚¯‚é“sŽs“à‚Ì’´’áŽü”gŽ¥ŠE‚Ì‘ª’è
Œ¤‹†ŽÒFAksel Straume ‚ç

ŠT—vFEpidemiological studies have indicated a connection between extremely low frequency magnetic flux densities above 0.4ƒÊT (time weighted average) and childhood leukemia risks.
This conclusion is based mainly on indoor exposure measurements.
We therefore regarded it important to map outdoor magnetic flux densities in public areas in Trondheim, Norway.
Because of seasonal power consumption variations, the fields were measured during both summer and winter. Magnetic flux density was mapped 1.0 m above the ground along 17 km of pavements in downtown Trondheim.
The spectrum was measured at some spots and the magnetic flux density emanated mainly from the power frequency of 50 Hz.
In summer less than 4% of the streets showed values exceeding 0.4
ƒÊT, increasing to 29% and 34% on cold and on snowy winter days, respectively. The average levels were 0.13 ƒÊT (summer), 0.85ƒÊT (winter, cold), and 0.90 ƒÊT (winter, snow), with the highest recorded value of 37 ƒÊT.
High spot measurements were usually encountered above underground transformer substations.
In winter electric heating of pavements also gave rise to relatively high flux densities.
There was no indication that the ICNIRP basic restriction was exceeded. It would be of interest to map the flux density situation in other cities and towns with a cold climate.

4
FP29|38F50Hz‚ÌŽ¥ŠEA350ƒÊT‚ÅAŠà‚Ì‘£iì—p‚Í‚È‚¢@@@@‰A«Œø‰Ê
ƒ^ƒCƒgƒ‹FLack of promotion effects of 50 Hz magnetic fields on 7,12-dimethylbenz(a)anthracene-induced malignant lymphoma/lymphatic leukemia in mice
ƒ}ƒEƒX‚É‚¨‚¯‚é7,12-dimethylbenz(a)anthracene‚Å—U“±‚µ‚½ˆ««ƒVƒ“ƒpŽîEƒŠƒ“ƒp«”’ŒŒ•a‚ɑ΂·‚é50‚g‚šŽ¥ŠE‚Ì‘£iŒø‰Ê‚ÍŒ©‚ç‚ê‚È‚¢B
Œ¤‹†ŽÒFTadashi Negishi‚ç

ŠT—vFNew-born CD-1 mice were initiated with a single subcutaneous injection of 60 ƒÊg 7,12-dimethylbenz(a)anthracene (DMBA) within 24 h after birth.
After weaning, the mice were randomly divided into five groups of 100, 50 males and 50 females each. One group served as a cage control.
The other four groups of mice were exposed to either 0 (sham-exposed), 7, 70, or 350
ƒÊT(rms) circularly polarized 50 Hz magnetic fields (MFs) for 22 h/day, 7 days/week for 30 weeks.
Animals were observed daily and the development of malignant lymphoma/lymphatic leukemia was examined histopathologically.
The experiment was conducted twice.
There was no observed sexual difference in the cumulative proportions of mice with malignant lymphoma/lymphatic leukemia and a 3-way analysis of deviance using the Cox regression model revealed no interactions between experiment, sex, or group.
The cumulative proportions of mice with malignant lymphoma/lymphatic leukemia in the MF-exposed groups were not significantly higher than those in the sham-exposed group of each sex in individual experiments and in males and females combined in each experiment, and in all the animals from the two experiments combined.
These data provide no evidence to support the hypothesis that power frequency MFs is a significant risk factor for hematopoietic neoplasia.

5
FP39-46F’¼—¬100ƒKƒEƒXŽ¥ŠE‚ͬ’·‚ð‘£i@@Ž¥ŠE‚Ì—Ç«Œø‰Ê
ƒ^ƒCƒgƒ‹FEffects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris
ÄzŠÂ”|—{‚µ‚½•’ʂ̃NƒƒŒƒ‰‚ÌRŽ_‰»–hŒìì—p‚É‚¨‚¯‚鎥ŠE‚ÌŒø‰Ê
Œ¤‹†ŽÒFHai-Ying Wang‚ç

ŠT—vFLittle is known about the influence of magnetic fields (MF) on growth of microalgae such as Chlorella vulgaris, which has been consumed as health food for various nutritional and pharmacological effects.
His preliminary study investigated whether static MF can modulate the antioxidant system in C. vulgaris by exposing the cells to static MF generated by dual yoke electromagnets with magnetic flux density of 10-50 mT for 12 h. After exposure to 10-35 mT for 12 h, the activity of superoxide dismutases and peroxidase increased significantly compared to control cells.
However, a remarkable increase of catalase activity occurred at 45 and 50mT.
The lipid peroxidation of algae cells determined by production of thiobarbituric acid-reactive substances was much increased when exposed to 35, 45, and 50mT of MF.
The scavenging ability of 2.2-diphenyl-1-picrylhydrazyl radical was decreased markedly while there was no variation of total carotenoids content in C. vulgaris cells.
Assay of specific growth rate in 72 h cultivation after MF exposure was also conducted. In groups after exposure to 10-35 mT of MF, specific growth rate was significantly increased.
These results suggest that 10-35 mT of static MF exposure could promote the growth of C. vulgaris and regulate its antioxidant defense system to protect cells efficiently, which could possibly enhance the growth of C. vulgaris in industrialized cultivation by MF.

6
FP47-54FŽ•‚É‹à‘®‚ð—p‚¢‚½ê‡A’¼—¬“d—¬‚Í×–E‚ÌŽ€‚ð‘‰Á‚³‚¹‚éB@@@ˆã—ÃŒø‰ÊH—z«Œø‰ÊH
ƒ^ƒCƒgƒ‹FDirect current electrical fields induce apoptosis in oral mucosa cancer cells by NADPH oxidase-derived reactive oxygen species
’¼—¬“dŠE‚ÍANADPH oxidase‚É‚æ‚Á‚Ä—U“±‚³‚ꂽ”½‰ž“I‚ÈŽ_‰»Ží‚É‚æ‚éŒûo”S–ŒŠà×–E‚É‚¨‚¯‚éƒAƒ|[ƒgƒVƒX‚ð‘‰Á‚³‚¹‚éB
Œ¤‹†ŽÒFMaria Wartenberg ‚ç

ŠT—vFThe presence of more than one dental alloy in the oral cavity often causes pathological galvanic currents and voltage resulting in superficial erosions of the oral mucosa and eventually in the emergence of oral cancer.
In the present study the mechanisms of apoptosis of oral mucosa cancer cells in response to electromagnetic fields was investigated.
Direct current (DC) electrical fields with field strengths between 2 and 16 V/m, applied for 24 h to UM-SCC-14-C oral mucosa cancer cells, dose-dependently resulted in decreased cell proliferation as evaluated by Ki-67 immunohistochemistry and up-regulation of the cyclin-dependent kinase (CDK) inhibitors p21cip1/waf1 and p27kip1, which are associated with cell cycle arrest. Electrical field treatment (4 V/m, 24 h) increased apoptosis as evaluated by immune-histo-chemical analysis of cleaved caspase-3 and poly-(ADP-ribose)-polymerase-1 (PARP-1).
Furthermore, robust reactive oxygen species (ROS) generation, increased expression of NADPH oxidase subunits as well as Hsp70 was observed.
Electrical field treatment (4 V/m, 24 h) resulted in increased expression of Cu/Zn superoxide dismutase and decreased intracellular concentration of reduced glutathione (GSH), whereas the expression of catalase remained unchanged.
Pre-treatment with the free radical scavenger N-acetyl cysteine (NAC) and the superoxide dismutase mimetic EUK-8 abolished caspase-3 and PARP-1 induction, suggesting that apoptosis in oral mucosa cancer cells is initiated by ROS generation in response to DC electrical field treatment.

7
FP55-64F2.1GHz“dŽ¥ŠE”˜˜I0.8W/kg‚Å×–E‚Ì•ª‰»‚ɉe‹¿‚È‚µ@@‰A«Œø‰Ê
ƒ^ƒCƒgƒ‹FMobile phone base station radiation does not affect neoplastic Transformation in BALB/3T3 cells

Œg‘Ñ“d˜bŠî’n‹Ç‚©‚ç‚Ì“dŽ¥”g‚ÍBALB/3T3×–E‚É‚¨‚¯‚éŽîᇫ•ª‰»‚ɉe‹¿‚ð—^‚¦‚È‚¢B

Œ¤‹†ŽÒFH. Hirose‚ç

ŠT—vFA large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields affect malignant transformation or other cellular stress responses.
Our group previously reported that DNA strand breaks were not induced in human cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA) radiation up to 800mW/kg from mobile radio base stations employing the IMT-2000 cellular system.
In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was assessed.
In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields in a similar fashion, to assess for effects on tumor promotion. Finally, the effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA).
At the end of the incubation period, transformation dishes were fixed, stained with Giemsa, and scored for morphologically transformed foci.
No significant differences in transformation frequency were observed between the test groups exposed to RF signals and the sham-exposed negative controls in the non-, MCA-, or MCA plus TPA-treated cells.
Our studies found no evidence to support the hypothesis that RF fields may affect malignant transformation.
Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes tumor formation.

8:P65-70
Fƒ~ƒŠ”g‘шæ‚É‚¨‚¯‚éZ“§[‚³‚ÌŒ¤‹†@@@’†«Œ¤‹†
ƒ^ƒCƒgƒ‹FMillimeter wave dosimetry of human skin ƒqƒg‚̔畆‚É‚¨‚¯‚éƒ~ƒŠ”g‚Ì”˜˜I•]‰¿
Œ¤‹†ŽÒFS.I. Alekseev‚ç

ŠT—vFTo identify the mechanisms of biological effects of mm waves it is important to develop accurate methods for evaluating absorption and penetration depth of mm waves in the epidermis and dermis.
The main characteristics of mm wave skin dosimetry were calculated using a homogeneous unilayer model and two multilayer models of skin.
These characteristics included reflection, power density (PD), penetration depth (), and specific absorption rate (SAR).
The parameters of the models were found from fitting the models to the experimental data obtained from measurements of mm wave reflection from human skin.
The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively.
The thin SC produced little influence on the interaction of mm waves with skin. On the contrary, the thick SC in the palm played the role of a matching layer and significantly reduced reflection.
In addition, the palmar skin manifested a broad peak in reflection within the 83-277 GHz range.
The viable epidermis plus dermis, containing a large amount of free water, greatly attenuated mm wave energy.
Therefore, the deeper fat layer had little effect on the PD and SAR profiles. We observed the appearance of a moderate SAR peak in the therapeutic frequency range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm.
Millimeter waves penetrate into the human skin deep enough ( = 0.65 mm at 42 GHz) to affect most skin structures located in the epidermis and dermis.

9:P71-80
FŒg‘Ñ“d˜b@•â’®Ší‚ւ̉e‹¿@‰·“x‚Í0.3“xã¸
ƒ^ƒCƒgƒ‹FAssessment of SAR and thermal changes near a cochlear implant system for mobile phone type exposures
Œg‘Ñ“d˜b‚É‚æ‚é“dŽ¥”g”˜˜I‚ɑ΂·‚éå—‹‚̃Cƒ“ƒvƒ‰ƒ“ƒgƒVƒXƒeƒ€‹ß–T‚É‚¨‚¯‚é‚r‚`‚q‚Ɖ·“x•Ï‰»‚ÉŠÖ‚·‚é•]‰¿
Œ¤‹†ŽÒFRobert L. McIntosh ‚ç

ŠT—vFA cochlear implant system is a device used to enable hearing in people with severe hearing loss and consists of an internal implant and external speech processor.
This study considers the effect of scattered radiofrequency fields when these persons are subject to mobile phone type exposure.
A worst-case scenario is considered where the antenna is operating at nominal full power, the speech processor is situated behind the ear using a metallic hook, and the antenna is adjacent to the hook and the internal ball electrode.
The resultant energy deposition and thermal changes were determined through numerical modelling.
With a 900 MHz half-wave dipole antenna producing continuous-wave (CW) 250 mW power, the maximum 10 g averaged SAR was 1.31 W/kg which occurred in the vicinity of the hook and the ball electrode.
The maximum temperature increase was 0.33
Ž in skin adjacent to the hook.
For the 1800 MHz antenna, operating at 125 mW, the maximum 10 g averaged SAR was 0.93 W/kg in the pinna whilst the maximum temperature change was 0.16
Ž.
The analysis predicts that the wearer complies with the radiofrequency safety limits specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the Institute of Electrical and Electronics Engineers (IEEE), and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for 900 and 1800 MHz mobile phone type exposure and thus raises no cause for concern.
The resultant temperature increase is well below the maximum rise of 1
Ž recommended by ICNIRP. Effects in the cochlea were insignificant.

 

•Åƒgƒbƒv‚É–ß‚é

---

 

 

‚TDBEMS Vol. 31 No. 8 2010”N12ŒŽ@˜_•¶Ž‚ÉŒfÚ‚³‚ꂽ˜_•¶

‹LF‚Q‚O‚P‚P|‚S|‚Q‚U

ŠÈ’P‚ÈŠT—v‚ÆAbstract‚ÌŒ´•¶‚ðˆÈ‰º‚ÉŽ¦‚·B
ŽžŠÔ‚̧–ñ‚©‚çAbstract‚̉¼–ó‚Í‚Å‚«‚Ü‚¹‚ñ‚Å‚µ‚½B
ŠÖS‚Ì‚ ‚é‚©‚½‚ÍAˆÈ‰º‚̉p•¶‚ð“Ç‚Þ‚©AŒ´•¶‘S•¶‚ð“üŽè‚µ‚Ä“Ç‚ñ‚Å‚­‚¾‚³‚¢B

ƒ^ƒCƒgƒ‹FRadiofrequency interaction with conductive colloids: Permittivity and electrical conductivity of single-wall carbon nanotubes in saline (pages 582–588)
Œ¤‹†ŽÒFH. Michael Gach, Tejas Nair

Abstract
Conductive nanoparticles may enhance tissue heating during radiofrequency (RF) irradiation.
Specific absorption rate (SAR) is known to rise with the electrical conductivity of tissue.
However, no studies to date have measured the relationship between complex permittivity and nanoparticle concentration in tissue-like samples.
The complex permittivities of colloids containing single-wall carbon nanotubes (SWCNTs) in normal (0.9%) saline were measured from 20 MHz to 1 GHz.
Carbon concentrations ranged from 0 to 93 mM (0.06% volume), based on SWCNT weight per volume.
Measurements were made with 0.02% Pluronic F108 surfactant added to the colloids to prevent SWCNT flocculation.
The data were fit to the Cole–Cole relaxation model with an added constant phase angle element to correct for electrode polarization effects at low RF frequencies. Electrode polarization effects increased with carbon concentration.
The real parts of the permittivities of the colloids increased with carbon concentration.
The static conductivity rose linearly with carbon concentration, doubling from 0 to 93 mM.
The SAR of the colloids is expected to increase with RF frequency, based on the properties of the imaginary part of the permittivity.
ˆã—×pƒnƒCƒp[ƒT[ƒ~ƒA‚ÉŠÖ‚·‚錤‹†

ƒ^ƒCƒgƒ‹FConfirmation studies of Soviet research on immunological effects of microwaves: Russian immunology results (pages 589–602)
Œ¤‹†ŽÒFYury G. Grigoriev, Oleg A. Grigoriev, Alexander A.et al:

Abstract
This paper presents the results of a replication study performed to investigate earlier Soviet studies conducted between 1974 and 1991 that showed immunological and reproductive effects of long-term low-level exposure of rats to radiofrequency (RF) electromagnetic fields.
The early studies were used, in part, for developing exposure standards for the USSR population and thus it was necessary to confirm the Russian findings.
In the present study, the conditions of RF exposure were made as similar as possible to those in the earlier experiments: Wistar rats were exposed in the far field to 2450 MHz continuous wave RF fields with an incident power density in the cages of 5 W/m2 for 7 h/day, 5 days/week for a total of 30 days, resulting in a whole-body SAR of 0.16 W/kg.
Effects of the exposure on immunological parameters in the brain and liver of rats were evaluated using the complement fixation test (CFT), as in the original studies, and an additional test, the more modern ELISA test.
Our results, using CFT and ELISA, partly confirmed the findings of the early studies and indicated possible effects from non-thermal RF exposure on autoimmune processes.
The RF exposure resulted in minor increases in formation of antibodies in brain tissue extract and the exposure did not appear to be pathological.
In addition, a study was conducted to replicate a previous Soviet study on effects from the injection of blood serum from RF-exposed rats on pregnancy and foetal and offspring development of rats, using a similar animal model and protocol.
Our results showed the same general trends as the earlier study, suggesting possible adverse effects of the blood serum from exposed rats on pregnancy and foetal development of intact rats, however, application of these results in developing exposure standards is limited.

ƒ‰ƒbƒg‚É2450MHz‚Ì“dŽ¥ŠE‚ð‘Sg‚É”˜˜IASAR‚Í0.16W/kg‚ÅA‰ß‹Ž‚Æ“¯‚¶‰e‹¿‚ª‚ ‚é‚Æ‚¢‚¤ƒf[ƒ^‚ðÄŒ»‚µ‚½A‚Æ‚¢‚¤Œ¤‹†Œ‹‰ÊB
Œ´•¶‚ð“Ç‚Þ‚ÆAƒ‰ƒbƒg‚Í1“ú7ŽžŠÔ“dŽ¥ŠE‚É”˜˜I‚µ‚Ä‚¢‚ÄA“dŽ¥ŠE‚Ö‚Ì”˜˜I’†‚ÍAˆù‚Ý…‚Ɖa‚ͧŒÀ‚µ‚½‚Æ‚ ‚éB
‚»‚Ì‚½‚ß‚ÉA‘Ìd‚Í’Êí‚ÌŽ”ˆç” ‚ÅŽ”ˆç‚µ‚½ŒQ‚É”ä‚ׂÄA’á‚­‚È‚Á‚Ä‚¢‚éB‚±‚¤‚µ‚½‰e‹¿‚à‚ ‚Á‚½‚Ì‚©‚à‚µ‚ê‚È‚¢B
”˜˜I‹­“x‚Æ‚µ‚Ä‘Sg•½‹ÏSAR‚Í0.16W/kg‚Å‚ ‚邪A“ª•”‚Ì‹ÇŠSAR‚̃s[ƒN‚Í1W/kg‚Å‚ ‚éB

Œ¤‹†ŽÒ‚Í‚±‚ꂪNon-thermal Œø‰Ê‚Å‚ ‚é‚Æ‹Lq‚µ‚Ä‚¢‚邪AICNIRP‚̈ê”ÊŒöO‚Ö‚Ì”˜˜IŠî€‚Å‚Í‘Sg”˜˜I‚ÍÅ‘å0.08W/kg‚Å‚ ‚éB


ƒ^ƒCƒgƒ‹FExtremely low-frequency electromagnetic fields affect the immune response of monocyte-derived macrophages to pathogens (pages 603–612)
Œ¤‹†ŽÒFZafer Akan, Burak Aksu, et al;

Abstract
This study aimed to determine the effect of extremely low-frequency electromagnetic fields (ELF-EMF) on the physiological response of phagocytes to an infectious agent.
THP-1 cells (human monocytic leukemia cell line) were cultured and 50 Hz, 1 mT EMF was applied for 4–6 h to cells induced with Staphylococcus aureus or interferon gamma/lipopolysaccharide (IFƒÁ/LPS).
Alterations in nitric oxide (NO), inducible nitric oxide synthase (iNOS) levels, heat shock protein 70 levels (hsp70), cGMP levels, caspase-9 activation, and the growth rate of S. aureus were determined.
The growth curve of exposed bacteria was lower than the control. Field application increased NO levels.
The increase was more prominent for S. aureus-induced cells and appeared earlier than the increase in cells without field application.
However, a slight decrease was observed in iNOS levels.
Increased cGMP levels in response to field application were closely correlated with increased NO levels. ELF-EMF alone caused increased hsp70 levels in a time-dependent manner.
When cells were induced with S. aureus or IFƒÁ/LPS, field application produced higher levels of hsp70. ELF-EMF suppressed caspase-9 activation by a small extent. These data confirm that ELF-EMF affects bacterial growth and the response of the immune system to bacterial challenges, suggesting that ELF-EMF could be exploited for beneficial uses.
50Hz 1mT
‚ÌŽ¥ŠE”˜˜I‚ʼne‹¿‚ðŒ©‚Â‚¯‚½B


ƒ^ƒCƒgƒ‹FA numerical coefficient for evaluation of the environmental impact of electromagnetic fields radiated by base stations for mobile communications (pages 613–621)
Œ¤‹†ŽÒFP. Russo, G. Cerri and V. Vespasiani

Abstract
The aim of this study is the development of an Electromagnetic Environmental Impact Factor (EEIF).
This is a global parameter that represents the level of electromagnetic impact on a specific area due to the presence of radiating systems, such as base station (BS) antennas for mobile communications.
The numerical value of the EEIF depends only on the electromagnetic field intensity, a well-defined physical quantity that can easily be measured or computed.
The paper describes the significant parameters of the field distribution adopted to evaluate the EEIF, and the assumptions used to develop a proper scale of values.
Finally, some examples of application of the EEIF method are analyzed for real situations in a typical urban area.
ƒCƒ^ƒŠƒA‚Ì–@—¥‚ÉŠî‚­Œg‘Ñ“d˜bŠî’n‹Ç‚©‚ç”­M‚³‚ê‚é“d”g”˜˜I‚Ì”’lŒvŽZ‚É‚æ‚é•]‰¿–@‚ÉŠÖ‚·‚錤‹†


ƒ^ƒCƒgƒ‹FEffect of static magnetic fields on the budding of yeast cells (pages 622–629)
Œ¤‹†ŽÒFShigeki Egami, Yujiro Naruse and Hitoshi Watarai
Abstract
The effect of static magnetic fields on the budding of single yeast cells was investigated using a magnetic circuit that was capable of generating a strong magnetic field (2.93 T) and gradient (6100 T2/ m).
Saccharomyces cerevisiae yeast cells were grown in an aqueous YPD agar in a silica capillary under either a homogeneous or inhomogeneous static magnetic field.
Although the size of budding yeast cells was only slightly affected by the magnetic fields after 4 h, the budding angle was clearly affected by the direction of the homogeneous and inhomogeneous magnetic fields.
In the homogeneous magnetic field, the budding direction of daughter yeast cells was mainly oriented in the direction of magnetic field B.
However, when subjected to the inhomogeneous magnetic field, the daughter yeast cells tended to bud along the axis of capillary flow in regions where the magnetic gradient, estimated by B(dB/dx), were high.
Based on the present experimental results, the possible mechanism for the magnetic effect on the budding direction of daughter yeast cells is theoretically discussed.
‚RT‚Æ‚¢‚¤‹­‚¢ÃŽ¥ŠE‚ɃC[ƒXƒg‹Û‚𔘘I‚µ‚½Œ¤‹†B

ƒ^ƒCƒgƒ‹FEffects of a 300 mT static magnetic field on human umbilical vein endothelial cells (pages 630–639)
Œ¤‹†ŽÒFLucia Potenza, Chiara Martinelli, Emanuela Polidori et al;
Abstract
This study describes the effects of a static magnetic field (SMF) on cell growth and DNA integrity of human umbilical vein endothelial cells (HUVECs).
Fast halo assay was used to investigate nuclear damage; quantitative polymerase chain reaction (QPCR), standard PCR, and real-time PCR were used to evaluate mitochondrial DNA integrity, content, and gene expression.
HUVECs were continually exposed to a 300 mT SMF for 4, 24, 48, and 72 h.
Compared to control samples (unexposed cultures) the SMF-exposed cells did not show a statistically significant change in their viability.
Conversely, the static field was shown to be significant after 4 h of exposure, inducing damage on both the nuclear and mitochondrial levels, reducing mitochondrial content and increasing reactive oxygen species.
Twenty-four hours of exposure increased mitochondrial DNA content as well as expression of one of the main genes related to mitochondrial biogenesis.
No significant differences between exposed and sham cultures were found after 48 and 72 h of exposure.
The results suggest that a 300 mT SMF does not cause permanent DNA damage in HUVECs and stimulates a transient mitochondrial biogenesis.
300mT
‚ÌÃŽ¥ŠE”˜˜I‚É‚æ‚Á‚Ä×–E‚ɉe‹¿‚ðŒ©‚½‚ªAˆêŽž“I‚ȕω»‚ÅA‰i‹v“I‚ȕω»‚Å‚Í‚È‚©‚Á‚½B


ƒ^ƒCƒgƒ‹FEffects of 180 mT static magnetic fields on diabetic wound healing in rats (pages 640–648)
Œ¤‹†ŽÒFDa Jing, Guanghao Shen, Jing Cai, Feijiang Li, Jinghui Huang et al;
Abstract
Diabetic wound (DW) problems are becoming a formidable clinical challenge due to the sharp increase in the diabetic population and the high incidence of DW.
Static magnetic field (SMF) therapy, an inexpensive and accessible noninvasive method, has been proven to be effective on various tissue repairs.
However, the issue of the therapeutic effect of SMF on DW healing has never been investigated.
The objective of this study was to systematically evaluate the effect of a 180 mT moderate-intensity gradient SMF on DW healing in streptozotocin-induced diabetic rats.
Forty-eight 3-month-old male Sprague–Dawley rats (32 diabetic and 16 non-diabetic rats) were assigned to three equal groups: normal wound, DW, and DW + SMF groups.
An open circular wound with 1.5 cm diameter was created in the dorsum.
The wound was covered with a dressing and the magnet was fixed on top of the dressing.
On days 5, 12, and 19, four rats of each group were euthanized and gross wound area, histology and tensile strength were evaluated.
The wound area determination suggested that SMF significantly increased the healing rate and reduced the gross healing time.
This result was further confirmed by histological observations.
The wound tensile strength, reflecting the amount and quality of collagen deposition, increased to a larger extent in the DW + SMF group on days 12 and 19 compared with the DW group.
The results indicated that 180 mT SMF presented a beneficial effect on DW healing, and implied the clinical potential of SMF therapy in accelerating DW repair and releasing the psychological and physical burdens of diabetic patients.
180
TÃŽ¥ŠE‚͈ã—ÃiŽ¡—Ãj‚É—LŒø‚©‚à‚µ‚ê‚È‚¢@‚Æ‚¢‚¤Œ¤‹†B


ƒ^ƒCƒgƒ‹FReduction of the earth's magnetic field inhibits growth rates of model cancer cell lines (pages 649–655)
Œ¤‹†ŽÒFCarlos F. Martino, Lucas Portelli, Kevin McCabeet al;
Abstract
Small alterations in static magnetic fields have been shown to affect certain chemical reaction rates ex vivo.
In this manuscript, we present data demonstrating that similar small changes in static magnetic fields between individual cell culture incubators results in significantly altered cell cycle rates for multiple cancer-derived cell lines.
This change as assessed by cell number is not a result of apoptosis, necrosis, or cell cycle alterations.
While the underlying mechanism is unclear, the implications for all cell culture experiments are clear; static magnetic field conditions within incubators must be considered and/or controlled just as one does for temperature, humidity, and carbon dioxide concentration.

×–EŽÀŒ±‚É‚¨‚¢‚ÄA’nŽ¥‹CiÃŽ¥ŠEj¬•ª‚Ì—L–³‚ÅA×–E‚̬’·‚ª‰e‹¿‚ðŽó‚¯‚éB
’Êí‚Ì’nŽ¥‹C‚Ì‹­‚³‚ɑ΂µ‚ÄA’nŽ¥‹C‚ª‚È‚¢ó‘Ô‚É‚·‚é‚ÆA×–E‚̬’·‚ª—}§‚³‚ê‚éB
ŽÀŒ±‚É‚æ‚é臒l‚Í20ƒÊT‚Å‚ ‚èA‚±‚ê‚æ‚è’á‚¢‚Ƭ’·‚ª—}§‚³‚ê‚éB
‚µ‚½‚ª‚Á‚ÄB×–EŽÀŒ±‚ðs‚¤ê‡‚ÍA‰·“x‚⎼“x‚ÌŠÇ—‚ɉÁ‚¦‚ÄA’nŽ¥‹C‚ÉŠÖ‚·‚é”z—¶‚ª•K—v‚É‚È‚Á‚Ä‚­‚éB
ˆÈ‰º‚Ƀf[ƒ^‚̈ꕔ‚ðˆø—p‚·‚éB
45
ƒÊT‚Ì’Êí‚Ì’nŽ¥‹C‚É”ä‚ׂÄA’ႢꇂÌ×–E”‚ɈႢ‚ªo‚Ä‚¢‚éB

@@@

 

ƒ^ƒCƒgƒ‹FProtein changes in macrophages induced by plasma from rats exposed to 35 GHz millimeter waves (pages 656–663)
Œ¤‹†ŽÒFRoza K. Sypniewska, Nancy J. Millenbaugh, Johnathan L. Kiel@et al;
Abstract
A macrophage assay and proteomic screening were used to investigate the biological activity of soluble factors in the plasma of millimeter wave-exposed rats. NR8383 rat macrophages were incubated for 24 h with 10% plasma from male Sprague–Dawley rats that had been exposed to sham conditions, or exposed to 42 ‹C environmental heat or 35 GHz millimeter waves at 75 mW/cm2 until core temperature reached 41.0 ‹C.
Two-dimensional polyacrylamide gel electrophoresis, image analysis, and Western blotting were used to analyze approximately 600 protein spots in the cell lysates for changes in protein abundance and levels of 3-nitrotyrosine, a marker of macrophage stimulation.
Proteins of interest were identified using peptide mass fingerprinting.
Compared to plasma from sham-exposed rats, plasma from environmental heat- or millimeter wave-exposed rats increased the expression of 11 proteins, and levels of 3-nitrotyrosine in seven proteins, in the NR8383 cells.
These altered proteins are associated with inflammation, oxidative stress, and energy metabolism.
Findings of this study indicate both environmental heat and 35 GHz millimeter wave exposure elicit the release of macrophage-activating mediators into the plasma of rats.

 

35GHz‚ðƒ‰ƒb‚Æ‚ÌŒŒŸ÷‚É”˜˜I‚µ‚½ŽÀŒ±A41“xC‚܂ʼn·“x㸂³‚¹‚Ä‚Ì”Mì—p‚ÉŠÖ‚·‚錤‹†B

 

•Åƒgƒbƒv‚É–ß‚é

---

 

 

 

‚UDBEMS Vol. 37 No. 6@2016”N9ŒŽ@˜_•¶Ž‚ÉŒfÚ‚³‚ꂽ˜_•¶

‹LF‚Q‚O‚P‚W|‚T|‚T

‚Pj–kžŠ‚ç‚Ì“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚錤‹†

ŒfÚŽFBioelectromagnetics. 37:353–372, 2016.
ƒ^ƒCƒgƒ‹FDevelopment and evaluation of an electromagnetic hypersensitivity questionnaire for Japanese people  

@“ú–{l‚ð‘ÎÛ‚Æ‚µ‚½“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚鎿–â•[‚ÌŠJ”­‚Æ•]‰¿
Œ¤‹†ŽÒFSachiko Hojo  Mikiko Tokiya  Masami Mizuki  et al:

Abstract
ŠT—v
The purpose of the present study was to evaluate the validity and reliability of a Japanese version of an electromagnetic hypersensitivity (EHS) questionnaire, originally developed by Eltiti et al. in the United Kingdom.
–{Œ¤‹†‚Ì–Ú“I‚ÍA‰p‘‚ÌEltitit‚炪ŠJ”­‚µ‚½“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚鎿–â•[‚Ì“ú–{Œê”Å‚ÌM—Š«‚Æ—LŒø«‚ð•]‰¿‚·‚邱‚Æ‚Å‚ ‚éB

Using this Japanese EHS questionnaire, surveys were conducted on 1306 controls and 127 self
]selected EHS subjects in Japan.
‚±‚Ì“dŽ¥”g‰ß•qÇ‚ÌŽ¿–â•[‚ð—p‚¢‚ÄA“ú–{‚É‚¨‚¯‚鎩ŒÈ”F’è“dŽ¥”g‰ß•qÇŽÒ127lA‘ÎÆŒQ1306l‚ɑ΂µ‚ÄA’²¸‚ðs‚Á‚½B

Principal component analysis of controls revealed eight principal symptom groups, namely, nervous, skin
]related, head]related, auditory and vestibular, musculoskeletal, allergy]related, sensory, and heart/chest]related.
Šî–{—vˆö‰ðÍ‚ÍA_ŒoŽ¿A”畆ŠÖ˜AA“ª•”ŠÖ˜AA’®Šo‚¨‚æ‚Ñ‘O’ëA‹ØœŠiŒnAƒAƒŒƒ‹ƒMŠÖ˜AAŠ´ŠoAS‘ŸE‹¹ŠÖ˜A‚Ì8‚‚̊î–{ÇóƒOƒ‹[ƒv‚𖾂炩‚É‚µ‚½B

The reliability of the Japanese EHS questionnaire was confirmed by high to moderate intraclass correlation coefficients in a test–retest analysis, and high Cronbach's ƒ¿ coefficients (0.853–0.953) from each subscale.
“ú–{Œê”Å“dŽ¥”g‰ß•qÇŽ¿–â•[‚ÌM—Š«‚ÍA‚»‚ꂼ‚ê‚̃TƒuŽw”‚É‚¨‚¢‚ÄAŽŽŒ±\ÄŽŽŒ±‰ðÍ‚É‚¨‚¯‚é‘ŠŠÖŒW”‚ÆACronbach@‚̃¿ŒW”‚ª‚“x‚©‚ç’†“x‚Å‚ ‚邱‚Æ‚©‚çAŠm”F‚µ‚½B

A comparison of scores of each subscale between self
]selected EHS subjects and age] and sex]matched controls using bivariate logistic regression analysis, MannWhitney U] and ƒÔ2 tests, verified the validity of the questionnaire.
bivariate logistic regression
‰ðÍAMann–Whitney U] and ƒÔ2ƒeƒXƒg‚ð—p‚¢‚½Ž©ŒÈ”F’è“dŽ¥”g‰ß•qÇŽÒ‚Æ”N—îE«•Ê‚ðƒ}ƒbƒ`‚³‚¹‚½‘ÎÆŒQ‚Ƃ̊Ԃ̃TƒuŽw”‚Ì”’l‚Ì”äŠr‚ÅA‚±‚ÌŽ¿–â•[‚Ì—LŒø«‚ðŠm”F‚Å‚«‚½B

This study demonstrated that the Japanese EHS questionnaire is reliable and valid, and can be used for surveillance of EHS individuals in Japan.
‚±‚ÌŒ¤‹†‚ÅA“ú–{Œê”Å“dŽ¥”g‰ß•qÇŽ¿–â•[‚Í—LŒø‚Å‚ ‚èAM—Š‚Å‚«‚邱‚Æ‚ªŽ¦‚³‚ꂽB‚»‚µ‚ÄA“ú–{‚É‚¨‚¯‚é“dŽ¥”g‰ß•qÇŽÒŒÂX‚ÌŠm”F‚É—LŒø‚Å‚ ‚邱‚Æ‚ªŽ¦‚³‚ꂽB

Furthermore, based on multiple logistic regression and receiver operating characteristic analyses, we propose specific preliminary criteria for screening EHS individuals in Japan.
‚³‚ç‚ÉAmultiple logistic regression‰ðÍ‚Æreceiver operating characteristic‰ðÍ‚ÉŠî‚«A“ú–{‚É‚¨‚¯‚éŒÂX‚Ì“dŽ¥”g‰ß•qÇŽÒ‚Ì”»’è‚ÉŽg‚¤1ŽŸ”»’è‚ÉŽg‚¤‚±‚Æ‚ðA‰äX‚Í’ñˆÄ‚·‚éB


‚QjŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚É‚æ‚鸎q‚ւ̉e‹¿‚ÉŠÖ‚·‚錤‹†

ŒfÚŽFBioelectromagnetics. 37:373–381, 2016.
ƒ^ƒCƒgƒ‹FEffects of 1950MHz W]CDMA]like signal on human spermatozoa
1950
‚l‚gz@W-CDMA—ÞŽ—‚ÌM†‚Ìl‚̸Žq‚ւ̉e‹¿
Œ¤‹†ŽÒFSetsu Nakatani]Enomoto, Miho Okutsu, Yoshikazu Ugawa et al:

Abstract
ŠT—v
There are growing concerns about how electromagnetic waves (EMW) emitted from mobile phones affect human spermatozoa.
Œg‘Ñ“d˜b‚©‚ççtŽË‚³‚ê‚é“dŽ¥”g‚É‚æ‚él‚̸Žq‚ɉe‹¿‚ð—^‚¦‚邱‚Æ‚ÉŠÖ‚·‚é•sˆÀ‚ªL‚ª‚Á‚Ä‚¢‚éB

Several experiments have suggested harmful effects of EMW on human sperm quality, motility, velocity, or the deoxyribonucleic acid (DNA) of spermatozoa.
l‚̸Žq‚ÌŽ¿E‰^“®—ÍE‘¬“x‚⸎q‚ÌDNA‚Ö‚Ì“dŽ¥”g‚ÌŒ’N‰e‹¿‚ªAŠô‘½‚ÌŒ¤‹†‚É‚æ‚Á‚ÄŽ¦´‚³‚ê‚Ä‚¢‚éB

In this study, we analyzed the effects on human spermatozoa (sperm motility and kinetic variables) induced by 1
h of exposure to 1950MHz Wideband Code Division Multiple Access (W]CDMA)]like EMW with specific absorption rates of either 2.0 or 6.0W/kg, using a computer]assisted sperm analyzer system.
–{Œ¤‹†‚ʼnäX‚ÍAƒRƒ“ƒsƒ…[ƒ^Žx‰‡‚̸Žq‰ðÍ‘•’u‚ð—p‚¢‚ÄASAR‚ª2.0‚à‚µ‚­‚Í6.0W/kg‚Ì“dŽ¥”gA‚±‚Ì“dŽ¥”g‚Í1950‚l‚gz‚ÌW-CDMA•ûŽ®‚ÅA1ŽžŠÔ‚Ì”˜˜I‚É‚æ‚Á‚ÄA¸Žqi‰^“®—͂Ɖ^“®•Ï”j‚ւ̉e‹¿‚𒲸‚µ‚½B

We also measured the percentage of 8
]hydroxy]2Œ]deoxyguanosine (8]OHdG) positive spermatozoa with flow cytometry to evaluate damage to DNA.
DNA
‚Ì‘¹‚𒲂ׂ邽‚ß‚É—¬“®×–EŒv‘ª–@‚ð—p‚¢‚ÄA‚W-OHdG—z«¸Žq‚ÌŠ„‡‚𑪒肵‚½B

No significant differences were observed between the EMW exposure and the sham exposure in sperm motility, kinetic variables, or 8
]OHdG levels.
¸Žq‚̉^“®—ÍA‰^“®•Ï”A‚W-OHdG‚ÉŠÖ‚µ‚Ä‚ÍA“dŽ¥”g”˜˜IŒQ‚Æ‘ÎÆŒQ‚ÌŠÔ‚É“Œv“I‚È—LˆÓ·‚Í‚È‚©‚Á‚½B

We conclude that W
]CDMA]like exposure for 1h under temperature]controlled conditions has no detectable effect on normal human spermatozoa.
‰äX‚ÍA§Œä‚³‚ꂽó‘Ô‚Å‚Ì1ŽžŠÔ‚ÌW-CDMA—ÞŽ—‚Ì“dŽ¥”g”˜˜I‚ÍAˆê”Ê‚Ìl‚̸Žq‚ÌŒŸo‰Â”\‚ȉe‹¿‚Í‚Ý‚ç‚ê‚È‚©‚Á‚½‚ÆŒ‹˜_•t‚¯‚½B

Differences in exposure conditions, humidity, temperature control, baseline sperm characteristics, and age of donors may explain inconsistency of our results with several previous studies.
Ž¼“xA‰·“x§ŒäAŠî–{‚ƂȂ鸎q‚Ì«Ž¿A’ñ‹ŸŽÒ‚Ì”N—î‚È‚Ç‚Ì”˜˜IðŒ‚Ì·ˆÙ‚ªAŠô‘½‚Ì‚±‚ê‚Ü‚Å‚ÌŒ¤‹†‚ƉäX‚ÌŒ¤‹†‚ªˆê’v‚µ‚È‚¢——R‚Å‚ ‚é‚©‚à‚µ‚ê‚È‚¢B


‚RjŒg‘Ñ“d˜b‚Ì“dŽ¥”g”˜˜I‚ÅAŠî’n‹Ç‚©‚ç‚Ì“dŽ¥”g”˜˜I‚æ‚èA’[––‚©‚ç‚Ì”˜˜I‚ª‘å‚«‚¢‚Æ‚¢‚¤Œ¤‹†B

ŒfÚŽFBioelectromagnetics. 37:382–390, 2016.
ƒ^ƒCƒgƒ‹FComparison of average global exposure of population induced by a macro 3G network in different geographical areas in France and Serbia
ƒtƒ‰ƒ“ƒX‚ƃZƒ‹ƒrƒA‚Æ‚¢‚¤ˆÙ‚È‚é’n—Šwã‚Ì’nˆæ‚É‚¨‚¯‚éŒg‘Ñ“d˜b‚̃}ƒNƒ‚RG’ÊM–Ô‚É‚æ‚Á‚Ä”­¶‚·‚镽‹Ï“I‚ÈlX‚Ì”˜˜I‚Ì”äŠr
Œ¤‹†ŽÒFYuanyuan Huang,  Nadège Varsier,  Stevan Niksic et al:

Abstract
ŠT—v
This article is the first thorough study of average population exposure to third generation network (3G)
]induced electromagnetic fields (EMFs), from both uplink and downlink radio emissions in different countries, geographical areas, and for different wireless device usages.
–{e‚ÍA‘æ3¢‘ã‚ÌŒg‘Ñ“d˜b’ÊM–Ô‚Å”­¶‚·‚é“dŽ¥”g‚ÌZ–¯‚Ì•½‹Ï”˜˜I‚ðAƒAƒbƒvƒŠƒ“ƒNiŒg‘Ñ“d˜b’[––‚©‚çŠî’n‹Ç‚ÉŒü‚¯‚Ä‚Ì–³ü’ÊMj‚ƃ_ƒEƒ“ƒŠƒ“ƒNiŒg‘Ñ“d˜bŠî’n‹Ç‚©‚ç”­M‚³‚ê‚é–³ü’ÊMj‚Ì—¼•û‚ÉŠÖ‚µ‚ÄA’n—Šw“I‚ɈقȂ鑂ÅA—p‚¢‚Ä‚¢‚é–³ü‘•’u‚ªˆÙ‚Ȃ邱‚Æ‚ð”O“ª‚ÉAʼn‚Ì“O’ê“I‚És‚Á‚½Œ¤‹†‚Å‚ ‚éB

Indeed, previous publications in the framework of exposure to EMFs generally focused on individual exposure coming from either personal devices or base stations.
ŽÀÛ‚ÉA“dŽ¥”g‚Ì”˜˜I‚ÉŠÖ‚·‚邱‚ê‚Ü‚Å‚ÌŠ§s•¨‚Å‚ÍAŒÂl‚ÅŽg—p‚·‚é‘•’u‚©‚ç‚©A‚à‚µ‚­‚ÍŠî’n‹Ç‚©‚ç‚Ì”˜˜I‚Ì‚¢‚¸‚ê‚©‚ÉÅ“_‚ð“–‚Ä‚Ä‚¢‚½B

Results, derived from device usage statistics collected in France and Serbia, show a strong heterogeneity of exposure, both in time, that is, the traffic distribution over 24
h was found highly variable, and space, that is, the exposure to 3G networks in France was found to be roughly two times higher than in Serbia.
ƒtƒ‰ƒ“ƒX‚ƃZƒ‹ƒrƒA‚ÅŽûW‚³‚ꂽ“Œv‚ð—p‚¢‚½‰ðÍ‚©‚瓾‚ç‚ꂽŒ‹˜_‚ÍA”˜˜I‚Ì‹­‚¢•s‹ÏŽ¿‚ªŒ©‚ç‚êAŽžŠÔ‚Å‚àŒ©‚ç‚êA‚·‚È‚í‚¿A24ŽžŠÔ‚̃gƒ‰ƒtƒBƒbƒNi’ÊM—Êj‚Ì•ª•z‚Í‚“x‚ɕω»‚µAꊂłà•Ï‰»‚µ‚Ä‚¢‚éBƒtƒ‰ƒ“ƒX‚É‚¨‚¯‚é‚RG’ÊM–Ô‚É‚æ‚锘˜I—Ê‚ÍAƒZƒ‹ƒrƒA‚É‚¨‚¯‚é—Ê‚Ì–ñ2”{‚Å‚ ‚邱‚Æ‚ª”»‚Á‚½B

Such heterogeneity is further explained based on real data and network architecture.
‚»‚¤‚µ‚½•s‹ÏŽ¿‚³‚ÍŽÀۂ̃f[ƒ^‚Æ’ÊM–Ô‚Ì\¬‚É‚æ‚é‚à‚Ì‚ÆAà–¾‚³‚ê‚éB

Among those results, authors show that, contrary to popular belief, exposure to 3G EMFs is dominated by uplink radio emissions, resulting from voice and data traffic, and average population EMF exposure differs from one geographical area to another, as well as from one country to another, due to the different cellular network architectures and variability of mobile usage.
Œ‹˜_‚̂ЂƂ‚Ƃµ‚ÄA‰äX‚ÍAˆê”Ê‚Ìl‚ÌŽv‚¢‚É”½‚µ‚ÄA‚RG‚É‚æ‚é“dŽ¥”g”˜˜I‚Å‚ÍA‰¹º‚ƃf[ƒ^’ÊMŽž‚É”­¶‚·‚éƒAƒbƒvƒŠƒ“ƒN–³ü’ÊM‚É‚æ‚锘˜I‚ªŽå—v‚È”˜˜I‚Å‚ ‚èA‚»‚µ‚ÄA•½‹Ï“I‚ÈlX‚Ì“dŽ¥”g”˜˜I—Ê‚Í’n—Šw“I‚ȗ̈æ‚É‚æ‚Á‚ĈقȂéi‘‚É‚æ‚Á‚Ă͈قȂèAŒg‘Ñ“d˜b’ÊM–Ô‚Ì\’z‚âŒg‘Ñ“d˜b‚ÌŽg—p‚Ì•p“x‚̈Ⴂ‚È‚Ç‚É‚æ‚éj‚±‚Æ‚ðŽ¦‚·B

BEMSJ
’FŒg‘Ñ“d˜b‚©‚ç‚Ì“dŽ¥”g”˜˜I‚ÅAƒ_ƒEƒ“ƒŠƒ“ƒNiŒg‘Ñ“d˜bŠî’n‹Ç‚©‚ç”­M‚³‚ê‚é–³ü’ÊMj‚æ‚èAƒAƒbƒvƒŠƒ“ƒNiŒg‘Ñ“d˜b’[––‚©‚çŠî’n‹Ç‚ÉŒü‚¯‚Ä‚Ì–³ü’ÊMj‚É‚æ‚锘˜I‚ª‘å‚«‚¢‚Æ‚¢‚¤Œ‹‰Ê‚ÍA’–Ú‚·‚ׂ«‚Å‚ ‚éB

‚Sj–³üŽü”g”“dŽ¥ŠE‚̓}ƒEƒX‚Ì‹L‰¯áŠQ‚ðˆ«‰»‚³‚¹‚È‚¢@‚Æ‚¢‚¤Œ¤‹†

ŒfÚŽGBioelectromagnetics. 37:391–399, 2016.
ƒ^ƒCƒgƒ‹F1950MHz radiofrequency electromagnetic fields do not aggravate memory deficits in 5xFAD mice
1950MHz
–³üŽü”g”“dŽ¥”g‚Í5xFADƒ}ƒEƒX‚Ì‹L‰­áŠQ‚ðˆ«‰»‚³‚¹‚È‚¢B
Œ¤‹†ŽÒFYeonghoon Son, Ye Ji Jeong, Jong Hwa Kwon et al:

Abstract
ŠT—v
The increased use of mobile phones has generated public concern about the impact of radiofrequency electromagnetic fields (RF
]EMF) on health.
Œg‘Ñ“d˜b‚ÌŽg—p‚Ì‘‰Á‚ÍAˆê”ÊŒöO‚ÉA–³üŽü”g”“dŽ¥”g‚ÌŒ’N‚ւ̉e‹¿‚ÉŠÖ‚·‚é•sˆÀ‚ð‚à‚½‚炵‚Ä‚¢‚éB

In the present study, we investigated whether RF
]EMFs induce molecular changes in amyloid precursor protein (APP) processing and amyloid beta (AƒÀ)]related memory impairment in the 5xFAD mouse, which is a widely used amyloid animal model.
–{Œ¤‹†‚Å‚ÍA“dŽ¥”g‚É‚æ‚Á‚ÄA5xFAD ƒ}ƒEƒX‚É‚¨‚¯‚éAPPiƒAƒ~ƒƒCƒhæ‹ì‘Ì‚½‚ñ‚Ï‚­Ž¿j‚̉ÁH‚ƃAƒ~ƒƒCƒhƒx[ƒ^ŠÖ˜A‹L‰¯áŠQ‚É•ªŽq‚̕ω»‚ª—U”­‚³‚ê‚é‚©A‚·‚È‚í‚¿L‚­Žg—p‚³‚ê‚Ä‚¢‚éƒAƒ~ƒƒCƒh“®•¨ƒ‚ƒfƒ‹‚ð—p‚¢‚ÄA’²¸‚ðs‚Á‚½B

The 5xFAD mice at the age of 1.5 months were assigned to two groups (RF
]EMF] and sham]exposed groups, eight mice per group).
1
E5‚©ŒŽ—î‚Ì5xFADƒ}ƒEƒX‚ð–³üŽü”g“dŽ¥”g”˜˜IŒQ‚ÆA‹^Ž—”˜˜IŒQ‚ÉAŠe8•CAŠ„‚è“–‚Ä‚½B

The RF
]EMF group was placed in a reverberation chamber and exposed to 1950MHz electromagnetic fields for 3 months (SAR 5W/kg, 2h/day, 5 days/week).
“dŽ¥”g”˜˜IŒQ‚ÍA“d”gˆÃŽº‚Ì’†‚É’u‚©‚êA1950MHz‚Ì“dŽ¥”g‚ð3‚©ŒŽŠÔ”˜˜I‚µ‚½iSAR‚Í5W/‡sA1“ú2ŽžŠÔAT5“újB

The Y
]maze, Morris water maze, and novel object recognition memory test were used to evaluate spatial and non]spatial memory following 3]month RF]EMF exposure.
Y
Œ^–À˜HAƒ‚ƒŠƒX…”Õ–À˜HA‚»‚µ‚Ä’˜–¼‚È”FŽ¯‹L‰¯ŒŸ¸‚ð“dŽ¥”g”˜˜I3ƒJŒŽŒã‚ÉA‹óŠÔ”FŽ¯‹y‚Ñ”ñ‹óŠÔ”FŽ¯‹L‰¯‚Ì•]‰¿‚Ì‚½‚ß‚ÉAs‚Á‚½B

Furthermore, AƒÀ deposition and APP and carboxyl
]terminal fragment ƒÀ (CTFƒÀ) levels were evaluated in the hippocampus and cortex of 5xFAD mice, and plasma levels of AƒÀ peptides were also investigated.
‚³‚ç‚ÉA5xFADƒ}ƒEƒX‚ÌŠC”n‚Æ‘å”]”玿‚É‚¨‚¢‚ÄAAƒÀ‘ÍÏAAPP‚ÆCTFƒÀƒŒƒxƒ‹‚ð•]‰¿‚µA‚»‚µ‚ÄAAƒÀƒyƒvƒ`ƒh‚ÌŒŒŸ÷ƒŒƒxƒ‹‚à•]‰¿‚µ‚½B

In behavioral tests, mice that were exposed to RF
]EMF for 3 months did not exhibit differences in spatial and non]spatial memory compared to the sham]exposed group, and no apparent change was evident in locomotor activity.
s“®—͂̃eƒXƒg‚Å‚ÍA3ƒJŒŽ“dŽ¥”g‚É–\˜I‚µ‚½ƒ}ƒEƒX‚ÍA‹^Ž—”˜˜IŒQ‚Æ”äŠr‚µ‚ÄA‹óŠÔ‹y‚Ñ”ñ‹óŠÔ‹L‰¯‚É·ˆÙ‚Ͷ‚¶‚È‚©‚Á‚½B‚»‚µ‚ÄAŠOŠÏã‚̕ω»‚Í‚È‚¢‚Ì‚ª•àsŠˆ«‚ÌŠmØ‚Å‚ ‚Á‚½B

Consistent with behavioral data, RF
]EMF did not alter APP and CTFƒÀ levels or AƒÀ deposition in the brains of the 5xFAD mice.
s“®—͂̃f[ƒ^‚ƈê’v‚µ‚ÄA“dŽ¥”g”˜˜I‚Í5xFADƒ}ƒEƒX‚É‚¨‚¯‚éAAPP‚ÆCTFƒÀƒŒƒxƒ‹‚à‚µ‚­‚̓}ƒEƒX‚Ì”]‚É‚¨‚¯‚éAƒÀ‘ÍÏ‚ð•Ï‰»‚³‚¹‚È‚©‚Á‚½B

These findings indicate that 3
]month RF]EMF exposure did not affect AƒÀ]related memory impairment or AƒÀ accumulation in the 5xFAD Alzheimer's disease model.
‚±‚ê‚ç‚ÌŒ‹‰Ê‚ÍA3ƒJŒŽ‚Ì–³üŽü”g“dŽ¥”g”˜˜I‚ªA‹L‰¯áŠQ‚ÉŠÖ˜A‚·‚éAƒÀ‚ɉe‹¿‚ð—^‚¦‚¸A‚Ü‚½A5xFAD‚̃Aƒ‹ƒcƒnƒCƒ}[•aƒ‚ƒfƒ‹‚É‚¨‚¯‚éAƒÀWςɉe‹¿‚ð—^‚¦‚È‚¢‚±‚Æ‚ðŽ¦‚µ‚Ä‚¢‚éB


‚Tj100Ti1000ƒKƒEƒXj‚ÌÃŽ¥ŠE‚ªA•¨‚Ì”­ˆç‚É—LŒø@‚Æ‚¢‚¤Œ¤‹†

ŒfÚŽFBioelectromagnetics. 37:400–408, 2016
ƒ^ƒCƒgƒ‹FPre]sowing static magnetic field treatment for improving water and radiation use efficiency in chickpeaƒqƒˆƒRƒ}ƒ (Cicer arietinum L.) under soil moisture stress
“yë‚Ì…•ªó‹µ‚É‚¨‚¯‚é‚Ђ悱“¤‚ÌA…‚ÆÆŽË‚ÌŒø—¦‰ü‘P‚Ì‚½‚ß‚ÉAŽí‚Ü‚«‘O‚ÌÃŽ¥ŠE‚Ö‚Ì”˜˜I
Œ¤‹†ŽÒFNilimesh Mridha, Sudipta Chattaraj, et al:

Abstract
Soil moisture stress during pod filling is a major constraint in production of chickpea (Cicer arietinum L.), a fundamentally dry land crop. We investigated effect of pre
]sowing seed priming with static magnetic field (SMF) on alleviation of stress through improvement in radiation and water use efficiencies.

Experiments were conducted under greenhouse and open field conditions with desi and kabuli genotypes.

Seeds exposed to SMF (strength: 100mT, exposure: 1
h) led to increase in root volume and surface area by 70% and 65%, respectively.
This enabled the crop to utilize 60% higher moisture during the active growth period (78–118 days after sowing), when soil moisture became limiting.
Both genotypes from treated seeds had better water utilization, biomass, and radiation use efficiencies (17%, 40%, and 26% over control).
Seed pre
]treatment with SMF could, therefore, be a viable option for chickpea to alleviate soil moisture stress in arid and semi]arid regions, helping in augmenting its production.

it could be a viable option to improve growth and yield of chickpea under deficit soil moisture condition, as the selection and breeding program takes a decade before a tolerant variety is released.


‚UjÃŽ¥ŠE‚ÉŠÖ‚·‚錤‹†

ŒfÚŽFBio electromagnetics. 37:409–422, 2016.
ƒ^ƒCƒgƒ‹FDielectric polarization transients in biological tissue moving in a static magnetic field
ÃŽ¥ê’†‚ðˆÚ“®‚·‚鶑̑gD‚É‚¨‚¯‚é—U“d•ª‹É‚̉ߓnŒ»Û
Œ¤‹†ŽÒFKari Jokela, Ilkka Laakso

Abstract

Movement of a body in a static magnetic field gives rise to the Lorentz force that induces in the medium both electric currents and dielectric polarization.

It is usually assumed that the conductivity of biological tissues is sufficiently high in order to neglect dielectric phenomenon arising from non]equilibrium of polarization charges. However, the permittivity of biological tissues is extremely high and the relaxation time of free charges is relatively low. In this study, we examined the effect of dielectric polarization on the electric field (EF) induced by human movements in a strong magnetic field (MF). Analytic equations for brain and bone equivalent spheres translating and rotating in a uniform MF were derived from Maxwell equations.

Several examples were computed by using Fast Fourier Transform to examine transient dielectric effects in a time domain.
The results showed that dielectric polarization transients do arise, but in the case of homogeneous medium, they are vanishingly small.
In contrast, the local dielectric transients are not vanishingly small in heterogeneous medium.
However, due to limited acceleration and deceleration of normal human movements, the transients are relatively small, at maximum a few dozen percent of the EF induced by the change of the magnetic flux.

Taking into account the high uncertainty in numerical simulation, the dielectric transients can be neglected in the case of biological materials but not in the case of many non
]biological materials of low conductivity.

BEMSJ
’F“ï‰ðB

‚Vj400kV‚ˆ³‘—“dü‰º‚Å‚Ìì‹Æ‚̈À‘S«

ŒfÚŽFBio electromagnetics. 37:423–428, 2016.
ƒ^ƒCƒgƒ‹FCurrent densities and total contact currents during forest clearing tasks under 400kV power lines
400 kV
‚Ì“d—Íü‚̉º‚ÅX—Ñ”°Ìì‹Æ’†‚Ìl‚Ì“d—¬–§“x‚Æ‘ÚG“d—¬
Œ¤‹†ŽÒFLeena Korpinen, Harri Kuisti, Jarmo Elovaara

Abstract
ŠT—v
The aim of the study was to analyze all values of electric currents from measured periods while performing tasks in forest clearing.
‚±‚ÌŒ¤‹†‚Ì–Ú“I‚ÍAX—Ñ”°Ì‚Ìì‹Æ‚ðŽÀs‚µ‚È‚ª‚瑪’è‚ðs‚Á‚½ŠúŠÔ‚Å“¾‚ç‚ꂽ‚·‚ׂĂ̓d—¬’l‚ð‰ðÍ‚·‚邱‚Æ‚Å‚ ‚éB

The objective was also to choose and analyze measurement cases, where current measurements successfully lasted the entire work period (about 30
min).
–Ú•W‚ÍAì‹ÆŠúŠÔ‘S‘Ìi–ñ30•ªj‚ÉŽñ”ö‚æ‚­Œp‘±‚µ‚½‘ª’è‚Å‚«‚½“d—¬‘ª’è’l‚ðA‘I‘ð‚Æ•ªÍ‚ðs‚¤‚±‚Æ‚Å‚µ‚½B

Two forestry workers volunteered to perform four forest clearing tasks under 400
kV power lines.
2
l‚Ì—Ñ‹Æ]Ž–ŽÒ‚ªA400kV‚Ì“d—Íü‚̉º‚Å4‰ñ‚ÌX—Ñ”°Ìì‹Æ‚ðs‚¤‚±‚Æ‚ðŽuŠè‚µ‚½B

The sampling frequency of the current measurements was 1
sample/s.
“d—¬‘ª’è‚̃Tƒ“ƒvƒŠƒ“ƒOŽüŠú‚ÍA1•bŠÔ‚É1‰ñ‚Æ‚µ‚½B

The maximum values of the current densities were 1.0–1.2
mA/m2 (calculated internal EFs 5.012.0mV/m), and the average values were 0.20.4mA/m2.
“d—¬–§“x‚ÌÅ‘å’l‚Í1.0–1.2mA/m2 (ŒvŽZ‚É‚æ‚é‘Ì“à“dŠE‹­“x‚Í5.0–12.0mV/m)A•½‹Ï’l‚Í0.2–0.4mA/m2‚Å‚ ‚Á‚½B

The highest contact current was 167.4
ƒÊA.
Å‚à‚‚¢ÚG“d—¬‚Í167.4ƒÊA‚Å‚ ‚Á‚½B

All measured values during forest clearing tasks were lower than basic restrictions (0.1
V/m and 0.8V/m) of the International Commission on Non]Ionizing Radiation Protection.
X—Ñ´‘|ì‹Æ’†‚Ì‘S‚Ä‚Ì‘ª’茋‰Ê‚Í‘Û”ñ“d—£•úŽËü–hŒìˆÏˆõ‰ï‚ÌŠî‘bŽwji0.1V/mA0.8V/‚j‚æ‚è’á‚©‚Á‚½B


•Åƒgƒbƒv‚É–ß‚é

---

 

‚PD‚P‚X‚X‚X”N¶‘Ì“dŽ¥‹CŠw‰ï‚Ì”NŽŸ‘‰ï‚©‚ç

 

‚UŒŽ‚ɃAƒƒŠƒJ‚ÅŠJ³‚ê‚é”NŽŸ‘‰ï‚̃vƒƒOƒ‰ƒ€‚ª“Í‚¢‚½B
u‰‰‚³‚ê‚鉉‘è‚ð’­‚ß‚Ä‚Ý‚½B

 

‚PjVDT‚âƒpƒ\ƒRƒ“‚©‚ç‚Ì“dŽ¥”g‚ÉŠÖ‚·‚é˜_•¶‚Í,ˆÈ‰º‚Ì‚P“_‚ɉ߂¬‚È‚¢B
’A‚µAƒtƒ‰ƒ“ƒX‚̃eƒNƒmAOŠÖ˜A‚ÅTVŽóM‹@‚ð—p‚¢‚½“®•¨ŽÀŒ±‚Ì•ñ‚ª‚Q€‚ɃŠƒXƒg‚·‚镨‚ª‚ ‚éB

˜_•¶FW. T. Kaune et al: Childrenfs exposure to magnetic fields produced by television sets used for viewing programs and playing video games.

‚QjƒeƒNƒmAO—‚Ý‚ÆŽv‚í‚ê‚éTVŽóM‹@‚ð—p‚¢‚½“®•¨ŽÀŒ±‚Ì•ñ‚ª‚ ‚éB
ƒ|ƒXƒ^[“WŽ¦F L. Bonhomme-faivre et al: Hematological effects of low doses of television emitted radiation in miceF:A parallel study with protective equipment.
˜_•¶”­•\F L. Bonhomme-faivre et al: Control variations observed in mice placed in front of a color TV screen:@a feedback control?

‚Rj“ú–{‚©‚ç‚ÌŒ¤‹†•ñ‚ª‚ ‚éB
Š•æ¶‚àŽQ‰Á‚µ‚½Œ¤‹†‚à‚ ‚éB
ƒ|ƒXƒ^[“WŽ¦FY. kurokawa. M. Kabuto et al: Acute effects of 50 Hz magnetic field on heart rate and cognition/performance tests in Humans.

‚Sj“Á‹L‚·‚ׂ«‚ÍA‘—“dü‚©‚ç‚ÌŽ¥ŠE‚ƬŽ™‚ª‚ñ‚ÌŠÖ˜A‚ðŽ¦´‚·‚é‰uŠw‚Å—p‚¢‚ç‚ꂽƒƒCƒ„[ƒR[ƒh‚ÆŒð’Ê—Ê‚ÌŠÖŒW‚ðŽ¦‚·Œ¤‹†‚ª•ñ‚³‚ê‚é—\’èB
˜_•¶FH. Wachtel et al: Traffic density and wire codes may be risk cofactors for childhood cancer.
ƒ|ƒXƒ^[“WŽ¦FR. Pearson et al: Wire codes and traffic density are associated on a citywide basis.

‚Tj“Á‹L‚·‚ׂ«‚ÍA“ú–{‚Ì‹vŒõ涂͔”N‘O‚ÌŒ¤‹†‚ÅŽ¥‹C‚ÅŠà×–E‚ðŽE‚·Œø‰Ê‚ð”­Œ©‚µ‚Ä‚¢‚邪A‚»‚ÌÄŒ»ŽÀŒ±‚È‚Ì‚©AƒhƒCƒc^ƒAƒƒŠƒJ‚©‚ç—ÞŽ—‚ÌŒ¤‹†”­•\‚ª‚ ‚éB
G. Nindl et al: Electromagnetic 60 Hz fields increase apoptosis of lymphocytes-A new area for possible therapeutic employment of EMFs.

˜_•¶Eƒ|ƒXƒ^[“WŽ¦‚Å‚ÍA’áŽü”g‚Ì“dŽ¥ŠEAŒg‘Ñ“d˜b“™‚Ì‚Žü”g“dŽ¥”g“™A‘½Šò‚ɂ킽‚錤‹†¬‰Ê‚ª”­•\‚³‚ê‚é—\’èB


•Åƒgƒbƒv‚É–ß‚é

---

 

‚P‚`DBEMS2000”N‘‰ï—\eW‚©‚ç

 

—\eW‚Ì’†‚©‚ç“dŽ¥”g‰ß•qÇ‚ÆVDT‚ÉŠÖ‚·‚é”­•\‚ðŽæ‚èo‚µ‚Ü‚µ‚½B@‚»‚ÌŠT—v‚ðЉ‚Ü‚·B@

Œ´“TF@Abstract collection@Bioelectromagnetics Society@Annual Meeting, June 9-16, 2000.@Munchen, Germany@

15-2
j300ƒKƒEƒXA3000ƒKƒEƒX‚Æ‚¢‚¤‹­‚¢èÎŽ¥ê‚̓qƒg‚ÌŒŒ—¬‚ɉe‹¿‚ð—^‚¦‚éB

CHANGES IN OXYGEN SATURATION LEVEL IN BLOOD DUE TO EXPOSURE TO STATIC MAGNETIC FIELDS

T.D. Kutrumbos* and F.S. Barnes

CONCLUSION: An array of strong magnets may change the SpO2 levels in blood in either the positive or negative direction.
@

15-3
jƒƒVƒA‚Ì“S“¹ˆõ‚ÉS‘ŸŽ¾Š³‚ª‘½‚¢‚±‚Æ‚©‚ç“d‹C‹@ŠÖŽÔ‚Ì’¼—¬EŒð—¬Ž¥‹C‚̉e‹¿‚ðl‚¦‚½B
’¼—¬‚ƌ𗬂ðdô‚µ‚½Ž¥ŠE‚ðŒ’N‚ȃqƒg‚Ɉó‰Á‚µ‚ÄS””‚Ȃǂ̕ω»‚𒲸B
Œ‹‰Ê‚ÍŽ¥ŠE–\˜I‚É‚æ‚Á‚Ä­‚È‚¢‚ª—LˆÓ‚ȕω»‚ªŒ»‚ꂽB
@

IS THERE PHYSIOLOGICAL RESPONSE TO COMBINED DC/AC MF EXPOSURE WITH
@PARAMETERS "SIMULATING" ELECTRIC ENGINE CONDITIONS?
E. Lyskov, M. Chernyshov, I. Nikeshina, V. Mikhailov, G. Sokolov and A. Vishnevskiy.

CONCLUSIONS: Data do not conflict with main project hypothesis. However, more pronounced CNS and ANS "stress" responses would be
@expected, in context of possible links between MF exposure and chronic cardiovascular disorders.

This work was supported by European Commission (contract@NERBIC15-CT96-0303).

15-4
j“dŽ¥”g‰ß•qÇ‚Æ‚¢‚í‚ê‚él‚̇–°‚ւ̉e‹¿‚𒲸B
20
ƒKƒEƒX‚©‚ç60ƒKƒEƒX‚Ì50HzŒð—¬Ž¥ŠE‚ð2d–ÓŒŸ–@‚ňó‰Á‚µ‚½‚çA—‚’©‚Ì‹C•ª‚Ȃǂɉe‹¿‚ªŒ»‚ꂽB
@
iƒRƒƒ“ƒgG20ƒKƒEƒX‚̌𗬎¥ŠE‚Å‚Í‘Ì“à‚É—U“±“d—¬‚ª—¬‚ê‚é‚Ì‚ÅAŒ’íl‚É‚à‰e‹¿‚ªo‚éHj@

PROJECT NEMESIS: DOUBLE-BLIND STUDY ON EFFECTS OF 50HZ EMF ON SLEEP QUALITY AND PHYSIOLOGICAL PARAMETERS IN PEOPLE SUFFERING
@FROM ELECTRICAL HYPERSENSITIVITY.
Ch.H. Mueller, H. Krueger and Ch. Schierz
@

RESULTS:
@
There was a significant overall effect of the EMF-provocation on subjective parameters in the morning: p=0.042. The EMF-provocation
@ affected the emotional scores pleasure and arousal in the morning (pPleasure=0.011; pArousal=0.046), the sleep quality score was not@affected. 90 Further inspection of the results revealed a trend@towards a positive correlation between the EMF-provocation and@well-being in the morning.

15-5
jƒXƒgƒbƒNƒzƒ‹ƒ€‚ŃAƒ“ƒP[ƒg’²¸‚ðŽÀŽ{‚µ‚½‚ç“dŽ¥”g‚ɉߕq‚Å‚ ‚é‚Ɖñ“š‚µ‚½Š„‡‚Í‚PD‚T“‚Éã‚Á‚½B
iƒRƒƒ“ƒgFƒAƒ“ƒP[ƒg‚ł͉½‚ð‰ß•qÇ‚Æ‚¢‚Á‚Ä‚¢‚é‚Ì‚©ŒÂX‚̉ñ“šŽÒ‚É‚æ‚Á‚ĈقȂé‚Ì‚ÅA‚à‚¤­‚µŒµ–§‚È’²¸AÄŒ»ŽÀŒ±‚È‚Ç‚ª•K—vj@
PREVALENCE OF REPORTED HYPERSENSITIVITY TO ELECTRICITY IN A POPULATION-BASED SURVEY.
L. Hillert, N. Berglind, B.B. Arnetz

RESULTS: Of all respondents, 1.5 % reported hypersensitivity to electric or magnetic fields. The prevalence was higher in women than in men and the syndrome was most common in the age group 60-69 years (2.1 %).
@

15-6
jŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ɉߕq‚Å‚ ‚é‚Æ‘i‚¦‚él‚ð‘ÎÛ‚ÉÄŒ»ŽÀŒ±‚ðs‚Á‚½B
Œ‹‰ÊA‰ß•q‚Æ‚¢‚¤ƒqƒg‚ÍŒg‘Ñ“d˜b‚©‚ç‚Ì“d”g‚ªo‚Ä‚¢‚邱‚Æ‚ð³Šm‚É“–‚Ă邱‚Æ‚Ío—ˆ‚È‚©‚Á‚½B


PROVOCATIVE TESTING OF HYPERSENSITIVITY TO CELLULAR PHONES
M. Hietanen and A.-M. Hamalainen
FFinnish Institute of Occupational

RESULTS: All of the test persons had more or less severe subjective symptoms during the provocative tests. However, none of them could correctly differ a real exposure from a sham exposure. Hence, the results of these experiments did not demonstrate clear connection between perceived health problems and
@the RF field exposure.@

P-205
j ƒeƒNƒmAO‚ÌŒø‰Ê‚ÌŒŸØŽÀŒ±A106“úŒã‚Ì•›t”玿ƒzƒ‹ƒ‚ƒ“‚ÍTV‚Ì‘O‚ÅŽ”ˆç‚µ‚½ê‡‚͕ω»‚¹‚¸A•ÊŽº‚ÅŽ”ˆç‚µ‚½‘ÎÆŒQ‚ƃeƒNƒmAO‚ð‚‚¯‚½TV‚ÅŽ”ˆç‚µ‚½‘l‚̕ω»‚Í“¯‚¶ŒXŒü‚Å‚ ‚Á‚½B‚±‚Ì‚±‚Æ‚©‚çƒeƒNƒmAO‚̓eƒŒƒr‚©‚ç‚̉e‹¿‚ð–hŒì‚µ‚Ä‚¢‚é‚ÆB@
iƒRƒƒ“ƒgFCortisol‚Ícortisone‚Ì‚±‚ÆH@•›t”玿ƒzƒ‹ƒ‚ƒ“B•›t”玿ƒzƒ‹ƒ‚ƒ“‚Í‘l‚̬ˆç‚łǂ̂悤‚ɕω»‚·‚é‚Ì‚ª³‚µ‚¢H‚»‚ê‚É‚æ‚Á‚Ä‚±‚ÌŒ¤‹†‚ª³‚µ‚­‘l‚ðŽ”ˆç‚µ‚Ä‚¢‚½‚©AŒ¤‹†¬‰Ê‚ªM—Š‚Å‚«‚é‚©‚ª‚í‚©‚éBj@

CORTISOL ALTERATIONS OBSERVED IN MICE PLACED IN FRONT OF A COLOR T.V SCREEN : A PARALLEL STUDY WITH A PROTECTIVE EQUIPMENT.
L. Bonhomme-Faivre  R. Santini , S. Orbach-Arbouys
@

CONCLUSION: Several studies have shown a decrease in cortisol values after exposure to ELF. It could be objected that light from the TV screen could have had an influence on cortisol secretion.
@
It seems however more likely that the effects on cortisol are due to EMF since it has already been reported (1,2) and since cortisol
@is not diminished in antenna protected mice placed under day light.@

CORTISOL VALUE ng/ml:  DAY 21    DAY 106
@
CONTROL               5.9
} 3.5   35.5 } 14.8 @
EXPOSED              10.7
} 5.4   15.4 } 10.5 @1,@2@
EXPOSED-PROTECTED   8.9
} 4.9   31.6 } 19.9@
Student's t test:   p<0.05 : 1 - compared to control, 2 - compared to exposed protected.

 

•Åƒgƒbƒv‚É–ß‚é

---

‚QDBEMS2001”N‘‰ï‚Ì—\eW‚©‚ç@

‘S231ƒy[ƒW@PDFƒtƒ@ƒCƒ‹‚Å–ñ2.7MB‚Æ–c‘åA@‚»‚Ì’†‚©‚çŠÖŒW‚µ‚»‚¤‚Ș_•¶‚¾‚¯‚𔲂«o‚µ‚½B
”Z’ƒF‚Ì•”•ª‚ÍBEMSJ‚ªd—v‚ÆŽv‚¤ŒÂŠA@Še˜_‚ÌÅŒã‚ÉAŠT—v‚Æ•MŽÒ‚̃Rƒƒ“ƒg‚ð’Ç‹L‚µ‚½B

‚PD
VDU, TV, Miscarriage‚Æ‚¢‚¤—pŒê‚Í—\eW‚É‚Í“oꂹ‚¸B@

‚QD
VDT‚Æ‚¢‚¤Œ¾—t‚ª“oꂵ‚½—Bˆê‚ÌŒ¤‹†@
P63FSYMPTOMS EXPERIENCED BY USERS OF DIGITAL CELLULAR PHONES.
R. Santini, M. Seigne*, L. Bonhomme-Faivre*, S. Bouffet*, E. Defreasne*, M. Sage*.@

RESULTS: No significant difference is observed between non-users and users of cellular phones for general symptoms.

This result has to be put in perspective with the facts that:
@
 - a/ non-users are in reality exposed to electromagnetic sources they know (70 % of them are exposed to VDT) or they don't know (microwaves from base stations, ELF from electrical wiring .... )
@

- b/in our study, the use of cellular phones by users is not important: for example, the mean for the number of calls per day is < 5 and the mean of calling time per day is < 15 minutes.
Cellular phone users significantly (P < 0.05) more often complain of discomfort, warmth and pricking on the ear during communication, in relation with calling duration ( > 2 minutes) and number of calls ( > 2 calls) per day.
@

The type of antenna has no significant effect on frequencies of complaints reported by cellular phones users. Users of 1800 MHz significantly (P<0.05) complain more often of concentration difficulties than 900 MHz users.
@

The use of both cellular phone and VDT significantly (P < 0.05) increases concentrating difficulties. In users of cellular phones, women significantly (P < 0.05) complain more often of sleep disturbances than men. This sex difference for sleep disturbances is not observed between women and men non-users of cellular phones.@

CONCLUSION:
Some of our results are new, compared to Mild report (2), as for example, sex difference for complaints about sleep disturbances, 1800 versus 900 MHz users difference for concentrating difficulties, ....@

We think that the warmth sensation on the ear reported here by digital cellular phones users during communication, is the result, at the skin level of microwave cerebral hyperthermia, because
microwaves increase temperature of a material from inside to outside (3) and because warmth receptors are in the skin.@

Thus the warmth sensation on the ear might be a signal for users indicating that it is time to stop the call.

ŠT—vF@ƒAƒ“ƒP[ƒg‚ÅŒg‘Ñ“d˜b—˜—pŽÒ‚Æ”ñ—˜—pŽÒ‚ÌÇó‚ð•·‚¢‚½B
Œ‹‰ÊAŒg‘Ñ“d˜b‚Æ‚u‚c‚s‚ðŽg—p‚µ‚Ä‚¢‚él‚ÉW’†—ÍŽU–Ÿ‚Æ‚¢‚¤ƒP[ƒX‚ª‘½‚¢B
@—«‚ÌŒg‘Ñ“d˜bŽg—pŽÒ‚É–é–°‚ê‚È‚¢‚Æ‚¢‚¤D‘i‚ª‘½‚¢B@
Ž¨‚ÌŠ‚ªŒg‘Ñ“d˜b‚ÌŽg—p‚ÅŒg‘Ñ“d˜b‚Ì“d”g‚Å”M‚­Š´‚¶‚é‚Ì‚ÍA“d˜b‚ð‚·‚é‚±‚Æ‚ðŽ~‚ß‚ë‚Æ‚¢‚¤‡}‚©‚à’m‚ê‚È‚¢B@
iƒRƒƒ“ƒgGŒg‘Ñ“d˜b‚Ì“d—Í’ö“x‚ÅŽ¨‚Ì•”•ª‚̉·“x‚ªã¸‚·‚éHj@

‚RD“dŽ¥”g‰ß•qÇ‚ÉŠÖ‚·‚錤‹†@

6-5:24H HOLTER ECG RECORDING AND PARALLEL MONITORING OF ELF MAGNETIC FIELD EXPOSURE IN PERSONS WITH PERCEIVED ELECTRICAL HYPERSENSISTIVITY. @
M.Sandstrom 1 , K.H. Mild 1,2 , R Hörnsten 1,3 *, E. Lyskov 1 .@

METHOD: We have used 24h Holter recording (Tracker 2, Reynolds Medical Ltd UK, two channels 24 hour ambulatory tape recorder) to monitor the basic autonomous nervous system processes - ECG, HR and heart rate variability(HRV) - which are the most sensitive integral parameters of central and autonomous regulation. @

The EMF monitoring was done by using EMDEX II instruments. The participant wore the ECG and EMF recorders for 24 hours during a typical working day and maintained a concurrent diary of the activities during that time.

The ECG recording have been analyzed for possible transient abnormalities of neuro-cardio-vascular regulation (arrhythmia's, extrasystols etc.) and quantitative assessment of ongoing balance of sympatho-parasympathetic regulation.
@

A standard program was used to detect and calculate pathological events as well as the dynamic of HR and HRV.
@

Two groups of subjects (14 persons in each) was included in the investigation. Patients with perceived EHS symptoms was selected from the Departments of Occupational Medicine and Dermatology at the Norrland University Hospital (Umeå, Sweden). Age and sex matched healthy people were used as controls.
@

RESULTS and DISCUSSION: The magnetic field recording showed the normal variation during the 24 h with low values during night time and occasionally high values were encountered in daytime.

No differences were found between the two groups, neither for the mean values of the broadband recording (0.09 and 0.11 µT for the patients and the controls, respectively) nor the harmonic content (corresponding values here were 0.03 µT for both groups).

We found no difference between the groups in the mean HR for the 24 h, nor was there any difference during night time. @

However, the HRV analyses showed that the ratio LF/HF ( LF= 0.05 – 0.15 Hz, HF= 0.15 – 0.30 Hz) was higher for the patient group over the 24 h period than for the control group.

The difference between the groups was in the ratio LF/HF was even larger during night time. The higher ratio indicates a higher symphaticus activity. This findings is in accordance with the results from previous clinical investigations of patients with perceived EHS.

ŠT—vF@“dŽ¥”g‰ß•qÇ‚Æ‚¢‚í‚ê‚él‚ÆŒ’íŽÒ‚ªS“d}‚Æ“dŽ¥ŠE”˜˜IŒv‚ð24ŽžŠÔŒg‚¦‚Ä‘ª’肵‚½B
—¼ƒOƒ‹[ƒv‚ÌŠÔ‚É–\˜I‚µ‚½“dŽ¥ŠE‚É·ˆÙ‚Í‚È‚¢B‰ß•qÇ‚ÌŒQ‚ÉS“d}‚̃f[ƒ^‚ªŒ’íŒQ‚ƈقȂéB
iƒRƒƒ“ƒgFS“d}‚̃f[ƒ^‚É·ˆÙ‚ª‚ ‚é‚©‚ç‚Æ‚¢‚Á‚ÄA‰ß•q‚Èl‚Í“dŽ¥”g‚̉e‹¿‚ðŽó‚¯ˆÕ‚¢‚Æ‚¢‚¦‚é‚Ì‚©HHj

‚SD‰uŠwŒ¤‹†‚©‚ç@

3-1:A NATIONWIDE GERMAN POPULATION-BASED CASE-CONTROL STUDY ON CHILDHOOD LEUKEMIA AND RESIDENTIAL MAGNETIC FIELDS.@
J. Schuz 1 *,J.P. Grigat 2 *,B. Stormer 2 *,K. Brinkmann 2 ,J. Michaelis 1 *.

OBJECTIVES: We investigated whether exposure to residential power-frequency (50 Hz) magnetic fields above 0.2µT increases a childfs risk of leukemia. One major task of this study was to confirm or to reject a finding
of a previous German study on this topic which reported an increased leukaemia risk with exposure to stronger magnetic fields during the night [1].

RESULTS: Magnetic fields above 0.2µT were a relatively rare event in Germany (only 1.5% of the study population) [2].
@
Less than one third of all median magnetic fields above 0.2µT were produced by high-voltage power lines
. Childhood leukaemia and 24 hours median magnetic fields were only weakly related (odds ratio 1.55, 95% confidence interval 0.65-3.67).

Based on 12 exposed cases and 12 exposed controls, a statistically significant association was seen between childhood leukaemia and magnetic field exposure during the night (3.21, 1.33-7.80).

A dose-response-relationship for night-time exposure was observed after combining the data of all German studies on magnetic fields and childhood leukaemia (p for trend <0.01) [3].

CONCLUSIONS: The evidence for an association between childhood leukaemia and magnetic fields in our study comes from a measure of the childfs exposure during the night. Albeit the large size of this study, the results are based on small numbers of exposed children. If the observed association stands, the effect on a population level in Germany would be small.

ŠT—vF@24ŽžŠÔŽq‹Ÿ‚ÌQŽº‹y‚Ñ’·‚¢ŠÔ‚·‚²‚·•”‰®‚ÌŽ¥ŠE‚𑪒èB@
24ŽžŠÔ‚ÌŽ¥ŠE•½‹Ï’l‚ƬŽ™”’ŒŒ•a‚̃IƒbƒY”ä‚Í1.55(CI 0.65-3.67),–éŠÔ‚ÌŽ¥ŠE’l‚ƬŽ™”’ŒŒ•a‚̃IƒbƒY”ä‚Í3.21iCI 1.33-7.80j‚Æ‘‰ÁB@
iƒRƒƒ“ƒgFǗႪ
12‚Æ‚Í­‚È‚·‚¬‚È‚¢H@j@@

3-2FMORTALITY FROM NEUROLOGICAL DISEASE IN A COHORT OF ENGINEERING@INDUSTRY WORKERS EXPOSED TO ELF MAGNETIC FIELDS.
N. HakanssonF P. GustavssonF C. JohansenF B. Floderus

METHODS: The study was based on
a cohort with an increased prevalence of resistance welders (highly exposed to ELF MF). In order to establish the cohort, we identified branches of industries where resistance welding could take place. @

The second step was to identify work places within these branches of industries during the study period (1985-96). Finally, we identified 537 692 men and 180 529 women employed at the selected work places.

The cohort was matched against the Causes of Death registry and the three most recent censuses. Levels of ELF MF exposure were obtained from a job exposure matrix.

Based on occupation according to the censuses, four levels of exposure were used (low, medium, high and very high exposure). We analyzed both underlying and contributing causes of death. Relative risk estimates (RR) were based on Cox regression.
@

RESULTS: No association was found for all neurological diseases combined.

There was an elevated risk among both men and women for Alzheimerfs disease and the risk tended to increase with increasing exposure level for both sexes. @
Furthermore, we found an elevated risk for amyotrophic lateral sclerosis (ALS) and also for this disease there was a suggestion of an exposure-response relationship.


We found no association for Parkinsonfs disease, multiple sclerosis or epilepsy. e did not find any association.

DISCUSSION: The findings in this study
are in line with previous reports of an increased mortality and risk for Alzheimerfs disease and ALS among employees occupationally exposed to ELF MF.@

An advantage of this study is the possibility to evaluate exposure-response relationships due to the increased prevalence of high exposed subjects.

An important limitation is that the analyses were based on mortality data. The relationships between exposure to ELF MF and neurodegenerative diseases should be further verified, preferably based on morbidity data.@

ŠT—vF@ƒhƒCƒc‚Å—nÚH‚Ì—l‚ÉŽ¥ŠE–\˜I‚Ì‘½‚¢E‹Æ‚Å‚ÍA‘¼‚ÌŒ¤‹†‚Æ“¯‚¶‚­AƒAƒ‹ƒcƒnƒCƒ}[•a“™‚̃ŠƒXƒN‚ª‘‰Á‚µ‚Ä‚¢‚éB@
iƒRƒƒ“ƒgGƒAƒuƒXƒgƒ‰ƒNƒg‚É‚Í‘‰Á‚µ‚½ƒŠƒXƒN‚Ì‘å‚«‚³‚âM—Š«‹æŠÔ‚ª‚È‚­A‚Ç‚Ì’ö“x‚Ì‘å‚«‚³‚̃ŠƒXƒN‚È‚Ì‚©”»’f‚Å‚«‚È‚¢Bj@

3-3FCANCER AND HIGH VOLTAGE POWERLINES WITH RESPECT TO WIND DIRECTION.
 
A. Preece, M.G. Wright*, G.R. Iwi*, E. Dunn*, D.J. Etherington*

BACKGROUND: The past 20 years has seen considerable research into the health effects of exposure to power frequency magnetic fields, where a number of studies, notably those near high voltage power lines
@have suggested an association with childhood leukaemia 1 .

These studies have looked at cases of cancer within 50m of power lines (the range of the magnetic field)2 and have considered only distance and not prevailing wind direction; at these distances any wind direction effects are likely to be obscured.

Recent studies have suggested that
aerosols produced by very high voltage lines might combine with pollutants and indirectly might be a mechanism for increased cancer rates 3.@

RESULTS: The ratio of the observed to expected number of cancer registrations up or down wind with the 95% confidence intervals were compared for different cancers (Table 1).

There is a statistically different incidence (raised) downwind compared to upwind for mouth and respiratory cancer, but no differences for combined stomach and colorectal cancer.
@

For the "false lines", the only significant result is a lower incidence downwind for stomach and colorectal cancers. As can be seen in Figure 1, there are some small differences in the age distribution of the two populations when down and up wind are compared as a ratio.
@

There are similar problems with considering socio-economic status. This and age has implications for smoking behaviour. This study is now being expanded to cover the complete South and West Cancer Intelligence Unit region - population 4.9 million compared to 1 million in Avon.
@

The resulting increase in cancer registrations should reduce the confidence intervals and allow correction factors to be added to account for the different age distributions.

 

 

 

gFalse lines" in Avon

Cases

Real lines in Avon County

Cases

All Cancers

Downwind

0.97 (0.94-1.00)

4113

1.05 (1.02-1.08)

4028

 

Upwind

1.00 (0.97-1.03)

 

1.00 (0.97-1.03)

 

Mouth

Downwind

1.04 (0.80-1.28)

58

1.43 (1.15-1.71)

43

C00-C14

Upwind

1.00 (0.73-1.27)

 

1.00 (0.71-1.29)

 

Respiratory

Downwind

1.04 (0.96-1.12)

559

1.11 (1.02-1.20)

530

C30-C37

Upwind

1.00 (0.91-1.09)

 

1.00 (0.92-1.08)

 

Digestive

Downwind

0.91 (0.84-0.98)

802

0.98 (0.91-1.05)

762

C15-C26

Upwind

1.00 (0.93-1.07)

 

1.00 (0.93-1.07)

 

 

Table 1: The incidence of cancer upwind or downwind of high voltage powerlines. Observed/expected (95% C.I.) based on an estimate of population (with the statistically significant differences in bold)@

ŠT—vF@‘—“dü‚©‚ç‚̃GƒAƒƒ]ƒ‹‚̉e‹¿‚Å”­ŠàƒŠƒXƒN‚Ì‘‰Á‚ª‚È‚¢‚©Œ¤‹†A‘—“dü‚Ì•—ã‚ÉZ‚Þl‚É”ä‚ׂÄA•—‰º‚ÉZ‚Þl‚É‹Í‚©‚ÈŠà‚̃ŠƒXƒN‘‰Á‚ªŒ©‚ç‚ê‚éB@ƒŠƒXƒN‚Í1.05A1.11A1.43‚Æ‘å‚«‚­‚Í‚È‚¢B@@

3-4:THE PLAUSIBILITY OF CO-CARCINOGENS FROM COMBINED EXPOSURE TO@AUTOMOTIVE EMISSIONS AND ELECTROMAGNETIC FIELDS.
H. Wachtel l , R.I. Pearson 2 . @

BACKGROUND: Several studies have linked proximity to high ampacity power lines [very high current configuration (VHCC) wire codes] with elevated childhood cancer risk—and thus implicated 60 Hz electromagnetic fields (EMF) as the causal agent.

However, in these studies (Denver and Los Angeles)
direct measurements of EMF did not confirm this implication. This "wire code paradox", as well as the failure to find associations of childhood leukemia with wire codes in subsequent studies (in other cities), has cast considerable doubt on the notion that power line EMFs are a risk factor unto themselves.

However, our recent observation of the interaction of traffic density and wire code as risk factors (for childhood cancer) could explain both the wire code paradox and the disparate results seen in studies based in different cities.
@

A combined high exposure to EMF and a plausible initiator—such as mobile source volatile organic compounds VOCs—may be better captured by the VHCC metric than by the measured EMF levels.
@

his co-exposure also may not be as prevalent in some cities (e.g., eastern USA) as it is in others (e.g., Denver and Los Angeles).
@

We are thus led to hypothesize that the basis of the elevated childhood
cancer risk is the combination of EMF with another factor, most likely related to air pollution.

The purpose of the current exploration is to probe the extent to which this hypothesis is supportedor refutedby experimental results.@

RESULTS: There are several plausible models, derivable from whole animal, tissue and cellular studies, that could explain co-carcinogenesis from combined exposure to VOCs and postulated promoters such as EMFs. Such models would apply not only to 60 Hz fields, but, perhaps more so, to RF and microwave fields.
@

CONCLUSION: The biological plausibility of co-carcinogenesis from combined exposure to VOCs and a variety of EMFs (ELF, RF, microwave, etc) appears to be more cogent than the notion of EMFs as a carcinogen per se.
@

In addition to perhaps explaining the inconsistencies of the power line epidemiological studies (the "wire code paradox" and the disparate outcomes in different cities) this type of combined effect may pertain to other "EMF plus VOC" exposure situations.
@

For example, it may imply elevated cancer risks for hand-held cellular phones used in the midst of high traffic or for locations proximal both to RF transmitters and high traffic (or other air pollution) corridors.
@

ŠT—vF@ƒƒCƒ„ƒR[ƒh‚ð—p‚¢‚½‘—“dü—R—ˆ‚ÌŽ¥ŠE‚ƬŽ™Šà‚Ì‘‰Á‚ÍAŽÀ‘ª‚ÌŽ¥ŠE‚Å‚ÍŒŸØ‚³‚ê‚È‚¢B@
ŠÂ‹«‚É‚¨‚¯‚éŒð’Ê—Ê‚ÉŠÖ˜A‚µ‚ăxƒ“ƒ[ƒ“‚È‚Ç‚Ì”­Šà•¨Ž¿‚É‚æ‚é”­Šà‚ÆŽ¥ŠE‚Ì‘ŠŒÝì—p‚É‚æ‚é‚à‚Ì‚Å‚ ‚é‚©‚à’m‚ê‚È‚¢B@‚»‚¤‚È‚é‚Æ‘—“dü—R—ˆ‚Ì“dŽ¥ŠE‚¾‚¯‚Å‚Í‚È‚­¤Œð’Ê‚â‹ó‹C‰˜õ‚ÆŒg‘Ñ“d˜b‚©‚ç‚Ì“dŽ¥”g‚Æ‚Ì‘ŠŒÝŠÖ˜A‚È‚Ç‚Ì–â‘è‚ào‚Ä‚­‚é‰Â”\«‚ª‚ ‚éB@

3-5:A METHOD FOR ASSESSING OCCUPATIONAL EXPOSURE TO POWER-FREQUENCY@MAGNETIC FIELDS FOR ELECTRICITY GENERATION WORKERS.
D. Renew, R.F. Cook*, M.C. Ball*. @

METHOD: The exposure assessment method for power station workers is based, not on job title alone, as in many previous methods, but also on where they worked in relation to the major sources of magnetic field.
@

As a result account is taken of differences in power station layout and of differences in operation conditions across the years. The most important source is the very large current flowing in the main generator connections, and in nearby overhead circuits.
@

Using the 3D magnetic field computer program, EM2D, the average magnetic fields resulting from these currents in specified areas of the power station were modeled assuming rated currents were flowing.
@

The average exposure of individuals within a particular job category, during a particular year, takes account of the percentages of their time spent in each area, the average magnetic field in each area and the load factor for the year relative to continuous operation at rated load.
@

CONCLUSION: The new method for assessing both current and historical magnetic field exposures in power stations has been devised which takes account of not only what job the person was doing but also where they worked in relation to the major sources of magnetic field.

It has been demonstrated to give a good prediction of exposures and is therefore suitable for estimating historical exposures for occupational epidemiological studies.
@

ŠT—vF@“d—͉ïŽÐ‚ɋΖ±‚·‚él‚Ì’áŽü”gŽ¥ŠE–\˜I—Ê‚Ì•]‰¿‚ÍA’P‚ÉE–±•\‚É‚æ‚炸AŽ¥ŠEŒ¹‚ª‚ ‚é‚Ç‚±‚Å“­‚¢‚Ä‚¢‚½‚©‚ðl—¶‚·‚ׂ«‚Å‚ ‚é@

3-6:MAGNETIC-FIELD EXPOSURES OF GARMENT WORKERS: RESULTS OF PERSONAL AND SURVEY MEASUREMENTS AND A PILOT INTERVIEW STUDY. @
M.A. Kelsh 1, T.D. Bracken 2, J.D. Sahl 3, M. Shum 1, K. Ebi 4.

METHODS: We measured exposures of garment
iˆß•žjworker to a range of extremely low magnetic fields (MF) at a small sample-making facility in Southern California and at a pants-making facility in New York.

In addition, we measured staged MF exposures near older sewing machines at a used sewing machine distribution center in Los Angeles.
@

Personal exposure (PE), and survey measurements were collected at all three sites. Fixed-location transient measurements were collected at two of the three sites.
@

PE measurements were collected simultaneously at the waist and chest areas; survey measurements were made at four body locations (head, chest, waist, and knees) near 77 sewing machines of various types: machines with alternating-current (AC) and direct-current (DC) motors, machines with both 110-V and 220-V motors, and near machines when idling and sewing.
@

We conducted a pilot interview survey among 25 Chinese-speaking garment workers at the New York facility to assess how well they could recall and report past work with sewing machines. Workers were asked questions about how long they have worked in the garment industry, hours worked per week, the types of products they have made, and about characteristics of the machines they used.
@

RESULTS:
Average personal exposure (PE) and survey measurements at the waist ranged from 0.04 to 3.1 mT.@

Average PE measurements at the waist were higher at the used machine shop than at the sample sewing facility and pants facility (1.17 vs. 0.15 and 0.45mT, respectively).@
MF levels were higher for AC machines than the levels for DC machines.
@

The field intensity increased moving down from the head, to chest, to waist, to knees during both idling and sewing.
@
Mean 60 Hz survey measurements for AC machines were 1.71, 1.22 and 0.46mT for the used machine shop, the sample sewing facility, and the pants facility respectively.

Among the Chinese garment workers interviewed, the mean age when workers first started a sewing-related job was 30 and the mean number of years worked in a sewing-related job was 13 years.
@

These workers reported working an average of 37 hours per week. Sewing activities consisted mainly of setting zippers and pockets, sewing skirts and pants, and sewing waistbands.
@

Although, most workers were able to distinguish whether the machines they had used were automatic or not (a proxy for DC or AC technology), they were not able to describe the voltage, motor type, or recall brand names of machines.
@

ŠT—vF@ƒ~ƒVƒ“‚ðŽg—p‚µ‚Ä‚¢‚éˆß•žŽY‹Æ‚É“­‚­l‚Ì’áŽü”gŽ¥ŠE–\˜I‚𒲸‚µ‚½B˜‚ÌŠ‚Å‘ª’肵‚ÄA•½‹Ï‚Í0.04 ‚©‚ç 3.1 mT‚Å‚ ‚Á‚½B@@iƒRƒƒ“ƒgFICNIRP‚̈ê”ÊŒöO‚ɑ΂·‚鎥ŠE–\˜IŒÀ“x’l0.1mT‚ð’´‚¦‚Ä‚¢‚éj@

‚TDE‹Æ“I‚È–\˜I‚ÉŠÖ‚·‚錤‹†‚Ì’†‚©‚ç@

6-7: INVESTIGATION OF STRESS PARAMETERS IN WORKERS WITH OCCUPATIONAL EXPOSURE TO STATIC AND 50 HZ MAGNETIC FIELDS.
B. Haugsdal, T. Tynes. @

MATERIALS and METHODS: Two groups of healthy men, all working in short shift cycles, took part in this study.
During work hours, all participants were equipped with a magnetic field monitor, HI-3550@(Holaday Industries, Inc.), integrating either static or 50 Hz fields respectively.

In the first group (Plant A) the participants (n=9, mean age 47.0 +/- 7.9 years) were exposed to static magnetic fields under two conditions. During one period, while working in the pot room, individual mean levels of exposure were in the range of 2.3 - 4.9mT. During another period, while working in the control room, the corresponding levels were 0.58 - 2.0mT.

In the second group (Plant B), the study subjects (n=13, mean age 37.9 +/- 10.5 years)
were exposed to 50 Hz magnetic fields with individual mean levels of exposure in the range of 3.1 -78.8 µT.

At both plants urine was sampled daily at four time intervals, three consecutive days with work at night, and one follow-up day with sleep at home.

In addition, a "control day" sampling was taken during a non-working period separated by two weeks from the night work period.

The urine volume from each interval was measured and recorded, and a pair of 15 ml samples were transferred to coded bottles and frozen for later analysis. From each pair of samples one was assayed for aMT6s in our previous study.
@

In the present study the other one was assayed for two species indicative of oxidative stress from lipid peroxidation (an isoprostan) and cellular immune activation (a pterin), respectively. The isoprostane, 8-epi-prostaglandin F2 alpha (8-epi-PGF
a), is formed from the free radical-catalyzed peroxidation of arachidonic acid, mainly via a non-cyclooxygenase pathway. @

The pterin, neopterin, is an end product in a chain starting with the activation of T-cells by stimuli like mitogenes and antigens, including oxidation products from free radical reactions with low density lipoproteins.
@

The levels of 8-epi-PGF
and neopterin were determined by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed by the mixed procedure, SAS version 6.12 (SAS institute, Cary, N.C).@

RESULTS: For workers in plant A, a significant (p=0.003) elevation in levels of 8-epi-PGF
was found in the samples collected during the night work period in the pot room, but not in the control room. @

The elevation did not correlate with the level of static magnetic field exposure. No significant changes in neopterin were observed in samples from any of the work places with exposure to static fields.@

For workers at plant B,
exposed to 50 Hz magnetic fields, a significant elevated level (p=0.04) of neopteriniƒlƒIƒvƒeƒŠƒ“‚Ƃ͉½Hj but not 8-epi-PGF was found.@

ŠT—vF@èÎŽ¥ŠE2.3 - 4.9mT‚É–\˜I‚µ‚½ê‡‚ÍŽ¥ŠE‚̉e‹¿‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½‚ªAŒð—¬Ž¥ŠE3.1 -78.8 µT‚É–\˜I‚µ‚Ä‚¢‚éŒQ‚ł̓lƒIƒvƒeƒŠƒ“‚ɕω»‚ªŒ©‚ç‚ꂽB@

P-16:VALIDATION OF AN EXPERT JUDGEMENT ASSESSING OCCUPATIONAL EXPOSURE TO 50 HZ MAGNETIC FIELDS USED IN AN EPIDEMIOLOGIC STUDY CONCERNING REPRODUCTIVE DISORDERS IN RELATION TO PARENTAL OCCUPATION.
K.G. Blaasaas 1,@T. Tynes 2. @

The objective of this study is to validate an expert judgement assessing occupational exposure to
50 Hz magnetic fields used in an epidemiologic study concerning reproductive disorder in relation to parental occupation.@

In order to assess the parents occupational exposure, we organized an expert panel to assess exposure to magnetic fields using a practical modification of a method described by Flynn et al. (1991) adapted to Norwegian conditions.

The expert panel consisted of one occupational physician, one physicist and two industrial hygienists, all with several years of experience in use of measurements of electromagnetic fields and occupational exposure.
@

The members of the expert panel first made their own classification of combinations of industrial branch and occupation into one out of three exposure levels quantified by hours per week in a potential magnetic field above a background level.
@

The following exposure categories were used: less than four hours per week, 4 - 24 hours per week and above 24 hours per week above background level.
@

The panel then met and discussed their results
.. The background field was not quantified, but was expected to be similar to office environments or homes, in Norway approximately 0.1 mT (Vistnes et al. 1997). @

To validate these expert judgments we let workers in selected occupations wear an Emdex II Standard dosimeter in a belt around their
waist during full working shifts. @

The Emdex II Standard dosimeter measures magnetic fields in the range 0.01 to 300 mT with bandwidth 40 - 800 Hz. We use a sampling rate of 10 seconds, and only the resultant field is monitored. @

Until now 15 different occupations have been measured; six from the lowest exposure category, five from the intermediate category and four from the highest category. 64 different workers carried the dosimeter through 133 working shifts.
@

The analysis so far indicates that some of the occupations are classified in a too low exposure category by the expert panel.
@

ŠT—vF@ŠeŽíE‹Æ‚ÉŠÖ‚µ‚Ä’áŽü”gŽ¥ŠE–\˜I—Ê‚Ì’²¸‚ðs‚Á‚Ä‚¢‚éÅ’†‚Å‚ ‚éB@

‚UD‚»‚Ì‘¼@‹»–¡‚Ì‚ ‚錤‹†‚©‚ç@

ƒƒqƒg‚̃ƒ‰ƒgƒjƒ“„@
SESSION 6: HUMAN STUDIES@
6-1:NOCTURNAL PLASMA MELATONIN LEVELS IN HUMANS ARE NOT REDUCED UNDER
@THE INFLUENCE OF WEAK 50 HZ MAGNETIC FIELDS AND MUSIC WHEREAS THEY ARE UNDER THE INFLUENCE OF LIGHT.
J. Reißenweber, R. David*, E. David, M. Pfotenhauer*.@

METHODS: 20 healthy volunteers of both sexes, aged from 21 to 34, were included into the study and exposed during one night from 9 p.m. to 6:30 a.m. to a circularly polarized
50 Hz sinusoidal magnetic flux@density of 100 microtesla. During another night they slept without field (control night).

Blood samples were taken at 10 p.m., 2 a.m. and 6:30 a.m. by antecubital venipuncture during exposure and control nights.
@

PMLs were measured by radioimmunoassay (RIA) kits. Additionally, 7 healthy volunteers of both sexes, aged from 21 to 32, were – instead of magnetic fields - exposed to light-at-night of an illumination intensity of 200 lux and 6 healthy volunteers of both sexes, aged from 22 to 32, were - instead - exposed to music of a sound pressure level of 60 dB (A), respectively.
@

RESULTS and DISCUSSION
: The results show that neither at 10 p.m. nor at 2 a.m. nor at 6:30 a.m. a significant reduction of PMLs can be observed under field exposure condition versus control nights and@versus music of a sound pressure level of 60 dB (A).

Light-at-night, however, is able to significantly reduce PMLs – an expected finding which confirms the validity of the experimental design used.
These results do not support the melatonin hypothesis of electromagnetic field effects in humans and are compatible with many fold findings of Graham et al. in 60 Hz magnetic fields.@

CONCLUSION:
Radio-immunologically determined nocturnal plasma melatonin levels in healthy human volunteers are not reduced under the influence of 50 Hz magnetic flux densities of 100 mT and music of a sound pressure level of 60 dB (A) whereas they are lower under the influence of light (illumination intensity: 200 lux) – as was to be expected from the physiological point of view.@

ŠT—vF@50Hz 100ƒÊ‚s‚ÌŽ¥ŠE‚É–éŠÔ–\˜I‚µ‚Ä‚àAƒqƒg‚ÌŒŒ’†ƒƒ‰ƒgƒjƒ“‚̃Œƒxƒ‹‚͕ω»‚µ‚È‚¢B@‚±‚ê‚Í‘¼‚ÌŒ¤‹†Œ‹‰Ê‚ðŽxŽ‚µ‚È‚¢B@

ƒ
0.1ƒÊT‚Æ‚¢‚¤”÷Žã‚ÈŽ¥ŠE‚ւ̉e‹¿‚ÌŒ¤‹†„

8-2:BEHAVIOURAL STRESS RESPONSES OF MICE MAY BE SENSITIVE TO WEAK, AMBIENT ELF MAGNETIC FIELDS ON THE ORDER OF 0.1uT
F.S. Prato, E. Choleris*+, A.W. Thomas*, G.R. Moran*

ŠT—vF‘l‚Í0.1ƒÊTˆÈ‰º‚Ì”÷­‚Ȍ𗬎¥ŠE‚ÉŠ´Žó«‚ðŽ‚Á‚Ä‚¢‚é‰Â”\«‚ª‚ ‚éB@

P-10:LUNG CANCER (”x‚ª‚ñ)RISK ESTIMATE IN PEOPLE LIVING NEAR HIGH VOLTAGE POWERLINES.
P. Fews, R.J. Wilding*, N.K. Holden*, P.A. Keitch*, D.L. Henshaw. H H Wills @

RESULTS: Space charge measurements near power lines suggest a lower limit to charge densities in the atmosphere in the range 2,000 – 3,000 cm -3 , corresponding to respective lower and upper limits to aerosol
@charging of 7% and 42%.

A charge density of 2,500 cm -3 and aerosol density of 15,000 cm -3 would correspond to 17% charging to which the population near power lines might on average be exposed.

The 99 results of Cohen et al (1988) suggest that single charges on 125 nm aerosols might lead to a 2-fold increase in total lung deposition.

If this result is applied to all aerosols in the peak of the number distribution, lung cancer risk might be similarly increased.

For 17% aerosol charging, the increased lung cancer risk would lie
@in the range 34% to 57%.

Extrapolated across the UK this corresponds to between 255 and 428 lung cancer cases annually assuming exposure out to 400 m downwind of power lines. Such an effect might be detectable in an epidemiological study.
@

ŠT—vF@‚ˆ³‘—“dü‚©‚ç‚̃GƒAƒƒ]ƒ‹‚ÅA”x‚ª‚ñ‚ð—U”­‚·‚é‚Ì‚Å‚Í‚È‚¢‚©@‚Æ‚¢‚¤Œ¤‹†B@i‚±‚Ì—\eW‚¾‚¯‚Å‚Í@‚æ‚­”»‚ç‚È‚¢Bj@

P-11:CHILDHOOD CANCER, LEUKAEMIA AND PROXIMITY TO CELL PHONE BASE STATIONS IN SOUTH-WEST ENGLAND.
E. Dunn, M.G. Wright*, J. Eavis*, A.W. Preece.

METHODS: A
case-control format is being used with 130 recently diagnosed childhood brain tumour and leukaemia cases, with their controls (matched by gender, ethnicity and age), in the South West of England.@

The main phase of data collection occurred with a visit to the family home using interviews, questionnaires and a field survey. Exposure is categorized in two ways.
@

1. A comprehensive measurement of the radio-frequency field levels for a 10% subset of the subjects at different distances from base stations.
@

A spectrum analyzer is used to measure open air exposure of the residence from all sources of RF (broadcast and cell phone) and an internal survey of the home to examine the attenuation due to the fabric, compared with data supplied by the phone providers of estimated field strength at that grid reference.
@

The feasibility of using a modified Nokia cell phone, with digitally reported signal strengths will be examined, using a card for each of the four UK providers.
@

2. All postcodes within 1km of residences (case and control) will be compared with company databases for the presence of base stations together with the date of commencement of operation. An in-house software package will compute distance of the residences to all base stations.

DISCUSSION: It was observed during the ELF study data collection that base stations were of particular concern to the parents of case children.

This concern has been prompted largely by the media and the recommendations of the Stewart Committee 3 that base stations should not be sited on schools (even though this recommendation is for risk perception and public acceptability purposes).
@

In addition an investigation into the risk perception of base stations completed in this department showed that those with most concern lived near an existing site.
This work is currently ongoing and we would welcome comments on the methodology.

ŠT—vF@ƒCƒMƒŠƒX‚É‚¨‚¢‚ÄŒg‘Ñ“d˜b‚Ì’†Œp“ƒ‚©‚ç‚Ì“dŽ¥”g‚ƬŽ™Šà‚ÌŠÖŒW‚ÌÇ—á‘ÎÆŒ¤‹†‚ðŽn‚ß‚½B@

ƒ“ú–{‚ÌŒ¤‹†AŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚Ì”­ƒKƒ“«„

P-48:1.5 GHZ ELECTROMAGNETIC NEAR FIELD DOES NOT PROMOTE 7, 12-DIMETHYLBENZ[A]ANTHRACENE - INITIATED MOUSE SKIN CARCINOGENESIS.
 
K. Imaida*1, K. Kuzutani*1, J. Wang*2, O. Fujiwara*2, T. Shirai*1.

Effects of 1.5GHz electromagnetic near field, used for cellular phone, were examined on mouse skin carcinogenesis initiated by 7,12-dimethylbenz[a]anthracene (DMBA).@



ICR-1, 10-week-old, female mice were treated with a single application of DMBA on shaved back skin by painting at concentration of 100 mg / 100 ml acetone per mouse. One week later, mice were divided into 4 groups, electromagnetic field exposure (EMF) group, sham-exposure group, 12-O-tetradecanoylphorbol-13-acetate (TPA, 4.0 mg / 200 ml acetone / mouse) as a positive control group of skin tumorigenesis, and non-treatment control.@

EMF near field exposure conditions are as follows: skin local peak specific absorption rate (SAR) 2.0 W/kg, whole body average SAR 0.084 W/kg (ratio of peak to average SAR is 24), 90 minutes exposure/day, 5 days/week, for 19 weeks.
@

The incidences of skin tumors in DMBA-EMF, DMBA-Sham, DMBA-TPA and DMBA-control are 0/48, 0/48, 29/30 (96.6%) and 1/30 (3.3%).
The incidences of papillomas and squamous cell carcinomas in DMBA-TPA and DMBA-control groups are 29/30 (96.6%) and 2/30 (6.7%), respectively.
@

The numbers of tumors per mouse (multiplicity) in these groups are 18.8 + 13.4 and 0.1 + 0.5, respectively.
@

EMF exposure did not exert any enhancing effect on skin tumorigenesis compared to sham group, although TPA, a positive control, clearly showed promoting effects.@

These data clearly demonstrated that 1.5GHz EMF, used for cellular phones, did not promote mouse skin tumorigenesis initiated by DMBA.
@

ŠT—vF@Œg‘Ñ“d˜b‚Ì“dŽ¥”g‚Í”­Šà«‚ª‚È‚©‚Á‚½B@

P-72:DOUBLE-BLIND CONTROLLED TRIAL OF A MAGNETIC BRACELET CLAIMED TO REDUCE PAIN ASSOCIATED WITH ARTHRITIS. @
R. Coghill. Coghill Research Laboratories, Lower Race, GWENT, NP4 5UH, UK.@

Clinical trials of magnetic fields of less than 2T on human subjects or patients are few in the West, but have been reported widely for some decades in the former USSR, other eastern bloc countries, and in the far East.
@

In the US, apart from the early work of the Barnothys at University of Illinois physics dept., research has largely focused on alternating fields.

This study examined the effectiveness of a static magnetic bracelet in reducing pain from arthritis(ŠÖ߉Š) in 47 subjects. @

Given the promise of static magnets indicated by cellular and live animal studies and their comparative absence of side-effects, coupled with the large number of eastern bloc clinical studies reporting significant benefits and the variety of devices on the market place, it is surprising that so few trials have been conducted. This study aimed to begin filling this gap in scientific knowledge.
@

RESULTS: The results suggested that the effect of the magnetic bracelet on pain severity is confined largely to locations nearest the bracelet, with more distant locations being less affected.
@

Statistical analysis:
@
The null hypothesis applied was that there should be no difference between the extent of subjective improvement on any part of the body if the effect is a purely placebo effect.

The alternative hypothesis is that those parts nearest the magnetic fields should show the greatest reduction in pain intensity.
@

It was assumed that wrist, arm, and hand are nearer and ankle, knee, and back are distant for the purpose of analysis:
@

Table 1 Comparison of locations exposed nearest the bracelet with those more distant

a) Nearer locations:

At outset

At completion

% change

Means:

2.90

1.92

-33.8

Std. Devn.

0.27

0.36

9.5

b)More distant locations:

 

 

 

Means:

3.04

2.55

-16.1

Std. Devn.

0.41

0.33

11.5

 

CONCLUSIONS: The constant use for three weeks of a proprietary gold-plated bracelet containing static magnets with a field strength of around 100-260 gauss on average appears to exert a statistically significant localized pain relief effect compared with a wide variety of existing medications which panel members continued to take during the trial three week period.

The most pronounced improvements in pain relief were experienced in locations nearest to where the bracelet was worn (hands, wrists and arms), showing an162 average reduction in pain intensity of approximately one third compared with a pain reduction of approximately one sixth to the more distant body locations (knee, back, and ankle).
@

The reduction in pain relief does not appear to be related to the level of magnetic field strength of the bracelet, which possibly indicates the value of continuously wearing a product which creates a magnetic field for the wearer.

The study had sufficient statistical power to detect a 50 percent difference, indicating that the results shown by this study were significant.
@
I am grateful to Magna Jewellery Ltd. for financial assistance with this research.
@

ŠT—vF‚P00\260ƒKƒEƒX’ö“x‚ÌèÎŽ¥‹C‚Å’É‚Ý‚ª˜a‚ç‚¢‚¾B@
iƒRƒƒ“ƒgF@“ú–{‚ÌŽ¥‹CƒlƒbƒNƒŒƒX‚ÌŒø‰Ê‚Æ“¯‚¶‚±‚ÆB@’A‚µ–{—ˆ‚Ì‚±‚ÌŽí‚̃eƒXƒg‚Í“ñd–ÓŒŸ–@‚Ås‚¤•K—v‚ª‚ ‚éBj@

14-2:SHIELDING EFFECTIVENESS OF RF PROTECTIVE CLOTHING NEAR AN AM RADIO TOWER: USEFULNESS OF BODY CURRENT EVALUATIONS.
D. Conover.

Workers are commonly exposed near AM radio antenna towers. Workers receive the highest exposure when they are close to these RF sources, e.g., in the cases of antenna tower climbers and other maintenance
@workers, who must work very close to the RF antenna.

RF protective clothing is sometimes used to reduce worker exposure from AM towers. However, standardized methods do not exist to determine the shielding effectiveness of RF protective clothing.

In addition, existing exposure assessment methods (i.e. field strength measurements) provide erroneous results when evaluating the shielding effectiveness of RF 80 protective clothing.

Induced body current technology shows promise for determining the shielding effectiveness of RF protective clothing.
@

RESULTS: The survey results indicate that the RF protective clothing is effective in reducing worker exposure (ankle and wrist current).

Wearing the protective suit, socks and gloves reduced the ankle current by a factor of 2.6X (8.3 dB). In addition, adding the hood further reduced the ankle current [up to 4.3X (12.7 dB)].

Wrist current was reduced by a factor of 3.5X (10.9 dB) when wearing the suit, socks and gloves. For some exposure conditions, ankle and wrist current reduction factors could not be determined because current readings were not detectable (i.e. below approx. 1mA).
@

CONCLUSIONS: Using an induced body current method provided convenient and reliable evaluations of shielding effectiveness for one brand of RF protective clothing tested.
@

In contrast, existing field strength methods cannot be used to evaluate the shielding effectiveness of RF protective clothing because these methods have consistently given unreliable results.
@

Induced current measurements indicated that the RF protective clothing was effective in reducing worker exposure (ankle and wrist current). @

Improved current detection sensitivity is needed so that shielding effectiveness can be determined for exposure conditions with low induced current (i.e. below approximately 1 mA).

This is particularly true when determining wrist current reduction and when wearing full protective clothing (suit, socks, gloves and hood).
@

In addition, further study is needed on the variation of shielding effectiveness with the degree of contact (snugness of fit) and amount of overlap between the pant leg and conductive sock as well as between the sleeve and conductive glove.
@

Finally, more field testing is needed to address additional RF sources and exposure conditions as well as the effectiveness of other types of RF protective clothing material.
@

ŠT—vF@•ú‘—ƒ^ƒ[“™‚Ì•ÛŽç‚ׂ̈ɋ­‚¢“dŠE‚É–\˜I‚·‚éì‹ÆŽÒ‚ׂ̖̈hŒì•ž‚Ì–hŒì‹@”\‚ð”@‰½‚É‘ª’è‚·‚é‚©‚ðŒŸ“¢‚µ‚½B@—U“±“d—¬‚𑪒肷‚é‚Ì‚ª—Ç‚¢B@

•Åƒgƒbƒv‚É–ß‚é

---

 

 

3. BEMS 2002”N@”NŽŸ‘‰ï‚Ì—\eW‚©‚ç

‹LF‚Q‚O‚P‚X|‚P‚Q|‚Q‚P

‹»–¡[‚¢Œ¤‹†“™‚ðЉ‚éB

‚»‚Ì1j
ƒ^ƒCƒgƒ‹F1-2FPHOSPHORYLATION OF HSP27 - THE MOLECULAR MECHANISM FOR MOBILE PHONE RADIATION-INDUCED INCREASE IN BLOOD-BRAIN BARRIER PERMEABILITY.
HSP27
‚̃Šƒ“Ž_‰»FŒg‘Ñ“d˜b‚Ì“d”g‚É‚æ‚Á‚Ä—U‹N‚³‚ê‚é”]ŠÖ–哧‰ß«‚Ì•ªŽqƒŒƒxƒ‹‚Ì‹@˜
Œ¤‹†ŽÒFD. Leszczynski.
Bio-NIR Research Group, Radiobiology Laboratory, STUK - Radiation and Nuclear Safety Authority, Helsinki, Finland

OBJECTIVE:
–Ú“I
To determine whether physiological responses of endothelial cells, which are associated with the hsp27 phosphorylation and might affect permeability of blood-brain barrier (stability of stress fibers, cell size/shape), occur in the mobile phone radiation exposed cultures of human endothelial cells.
ƒqƒg‚Ì“à”ç×–E‚Ì”|—{‚ÉŒg‘Ñ“d˜b‚Ì“dŽ¥”g‚ð”™‚Æ‚µ‚½ŽžAHsp27‚̃Šƒ“Ž_‰»‚ÉŠÖ˜A‚·‚é“à”ç×–E‚̶—Šw“I‚ȉž“š‚©A”]ŠÖ–哧‰ß«‚ɉe‹¿‚·‚é‚Ì‚©A‚¢‚¸‚ê‚©‚Å‚ ‚é‚Ì‚©Œ¤‹†‚·‚éB

METHODS:
•û–@
Human endothelial cell line EA.hy926 cells, grown on microscope cover slides, were exposed for 1h to 900MHz GSM signal at an average SAR of 2W/kg.
Œ°”÷‹¾—p‚̃vƒŒƒpƒ‰[ƒgiƒKƒ‰ƒXƒXƒ‰ƒCƒhj‚Ìã‚É”|—{‚µ‚½ƒqƒg—R—ˆ‚Ì“à”ç×–EEA.hy926‚𕽋ÏSAR2.0W/kg‚Ì900MHzGSM“d˜b‚Ì“d”g‚É1ŽžŠÔ”˜˜I‚µ‚½B

Temperature of cell cultures remained throughout irradiation period at 37+0.3
Ž thus the effects reported here are of non-thermal nature.
”|—{Ší‚̉·“x‚ÍA”˜˜I’†‚ð’Ê‚µ‚Ä37+0.3Ž‚ɧŒä‚µ‚½‚Ì‚ÅA‚±‚±‚Å‚Í”ñ”MŒø‰Ê‚𒲂ׂéB

RESULTS AND DISCUSSION:
Œ‹‰Ê‚ÆlŽ@
As expected, 1h exposure of cells to mobile phone radiation increased expression of hsp27.
However, in order to increase hsp27 expression by heat shock was required 3h incubation of cells at 43
Ž (1h exposure had no effect).
—\‘z‚Ç‚¨‚èA×–E‚Ö‚ÌŒg‘Ñ“d˜b‚Ì“d”g”˜˜I1ŽžŠÔ‚ÅAHSP27‚Ì”­Œ»‚Í‘‰Á‚µ‚½B
”MƒVƒ‡ƒbƒN‚É‚æ‚éHSP27‚Ì‘‰Á‚ÍA43Ž‚Ì×–E”|—{Ší‚Å3ŽžŠÔ‚ð—v‚·‚éi1ŽžŠÔ‚ł͉e‹¿‚Í‚È‚¢jB

This observation, together with the measurements showing that temperature of medium was throughout RF-EMF exposure period at 37+0.3
Ž, suggest that the observed here effects are of non-thermal nature.
–{ŽÀŒ±‚Í”˜˜I’†‚ðŠÜ‚ÞŽÀŒ±’†‚Í”|—{‰t‚̉·“x‚ð37+/-0.3Ž‚ɧŒä‚µ‚½‚Ì‚ÅA‚±‚ÌŽÀŒ±Œ‹‰Ê‚Í”ñ”MŒø‰Ê‚ÆŒ¾‚¦‚éB

BEMSJ
’F”ñ”MŒø‰Ê‚Æ‚¢‚¤‚ªA—â‹p‚µ‚È‚¯‚ê‚΂±‚Ì”˜˜I‚Å×–E‚̉·“x‚Í‚Ç‚Ì’ö“x‚Ü‚Å㸂·‚é‚Ì‚Å‚ ‚낤‚©H’Pƒ‚É”M‚Ì”­¶‚Ì‚È‚¢ó‘Ô‚Å‚ÌŽÀŒ±Œ‹‰Ê‚È‚Ì‚©A×–E‚͉·“x‚ªã‚ª‚邪A—â‹p‚É‚æ‚Á‚ĉ·“x‚͈ê’è‚É•Û‚½‚ꂽ‚Ì‚ÅŒ‹‰Ê‚Å‚ ‚낤‚©H‚±‚̘_•¶‚¾‚¯‚Å‚Í‚í‚©‚ç‚È‚¢B


‚»‚Ì2j
ƒ^ƒCƒgƒ‹F1-4FEFFECTS OF ELF AND MICROWAVES ON HUMAN LYMPHOCYTES FROM HYPERSENSITIVE PERSONS.
“dŽ¥”g‰ß•qǎ҂̃qƒgƒŠƒ“ƒp‹…‚Ö‚Ì’áŽü”g‚ƃ}ƒCƒNƒ”g‚̉e‹¿
Œ¤‹†ŽÒFI. Belyaev, L. Hillert, C. Tamm, M. Harms-Ringdahl, et al:
Department of Genetic and Cellular Toxicology, Stockholm University, Stockholm, Sweden;

OBJECTIVEF–Ú“I
Here, we used specific conditions of exposure to ELF to investigate if the response of lymphocytes from hypersensitive persons is different as compared to healthy subjects.
We also used GSM modulated microwaves, which have been previously shown to affect brain blood barrier in rats.
‰äX‚ÍA“dŽ¥”g‰ß•qǎ҂̃Šƒ“ƒp‹…‚̉ž“š‚ªŒ’N‚Èl‚̉ž“š‚Æ·ˆÙ‚ª‚ ‚é‚©‚ðŽÀŒ±‚·‚邽‚ß‚É‚Æ‹vêj’áŽü”g“dŽ¥ŠE”˜˜IðŒ‚ðݒ肵‚½B
‚Ü‚½A‰äX‚ÍA‰ß‹Ž‚ÌŽÀŒ±‚щƒbƒg‚Ì”]ŠÖ–å‚ɉe‹¿‚ªŒ©‚ç‚ꂽGSMŒg‘Ñ“d˜b‚Ì“d”g‚à—p‚¢‚½B

MATERIALS AND METHODS:
ŽÀŒ±•û–@
Fresh blood samples from two groups of donors, 7 persons reporting electro sensitivity and 7 healthy controls matched by gender, age and smoking habits were coded and all data were analyzed in blind.
V‘N‚ÈŒŒ‰t‚ð2ŒQ‚Ì’ñ‹ŸŽÒ‚©‚瓾‚½A“dŽ¥”g‰ß•qÇ‚ÆŽå’£‚µ‚Ä‚¢‚é7–¼‚ÆA«•ÊE”N—îE‹i‰Œó‹µ‚ðˆê’v‚³‚¹‚½7–¼‚ÌŒ’íŽÒ‚©‚çB‘S‚Ä‚ÌŒŒ‰t‚̓R[ƒh‰»‚µA–ÓŒŸ–@‚ÅŽÀŒ±‚ðs‚Á‚½B

Sinusoidal magnetic field (8Hz, 30mT amplitude or 50Hz, 15mT amplitude) was applied using Helmholtz coils.

Installation employing GSM signal, 915 MHz, all modulations included, SAR=1-2mW/g in the TEM cell was used. All exposures were 2h.
ƒwƒ‹ƒ€ƒzƒ‹ƒcƒRƒCƒ‹‚ðŽg‚Á‚ijŒ·”g‚ÌŽ¥ŠEi‚WHz 30mT ‚à‚µ‚­‚Í50Hz 15mTj‚𔘘I‚µ‚½B
915MHz
A‚·‚ׂĂ̕ϒ²‚ðŠÜ‚ß‚ÄASAR‚Í1-2mW/g‚ÌGSM“d”g‚ðATEMƒZƒ‹‚ð—p‚¢‚Ä”˜˜I‚µ‚½B

CONCLUSIONS: The data suggested that ELF magnetic fields and microwaves under specific conditions of exposure affect lymphocytes from healthy and electrosensitive donors.
’áŽü”g“dŽ¥ŠE‚ƃ}ƒCƒNƒ”g“d”g‚Ö‚Ì”˜˜I‚ÍAŒ’íŽÒ‚Æ“dŽ¥”g‰ß•qÇŽÒ‚©‚ç‚ÌŒŒ‰t‚Ö‚Ì”˜˜I‚͉e‹¿‚ª‚ ‚Á‚½‚Æ‚¢‚¤ƒf[ƒ^‚Å‚ ‚Á‚½B

ELF under specific conditions of exposure resulted in apoptotic DNA fragmentation.
“ÁˆÙ‚ÈðŒ‰º‚Ì’áŽü”g”˜˜I‚ÍAƒAƒ|[ƒgƒVƒX‚µ‚½DNA‚Ì”jÓ‚Æ‚¢‚¤Œ‹‰Ê‚Å‚ ‚Á‚½B
These effects differ at different frequencies and vary between donors.
‚±‚̕ω»‚ÍŽü”g”‚É‚æ‚Á‚ĈقȂèAŒŒ‰t‚Ì’ñ‹ŸŽÒŠÔ‚Å‚àˆÙ‚È‚Á‚½B

In some cases, cells from electrosensitive donors responded stronger than cells from gender- and age-matched control subjects, but the results need to be confirmed in a larger study group.
Šô‚‚©‚̃P[ƒX‚Å‚ÍA“dŽ¥‰»‰ß•qÇŽÒ‚©‚ç‚ÌŒŒ‰t‚ªA«•ÊE”N—î‚𒲘a‚³‚¹‚½‘ÎÆŽÒ‚æ‚è‚àA‹­‚¢”½‰ž‚ðŽ¦‚µ‚½‚±‚Æ‚à‚ ‚èA‚æ‚è‘å‚«‚ÈW’c‚Å‚ÌŠm”FŽÀŒ±‚ª•K—v‚Å‚ ‚é‚Æ‚¢‚¤Œ‹˜_‚Å‚ ‚éB

BEMSJ
’F“dŽ¥”g‰ß•qÇ‚ÌŒ¤‹†‚Æ‚µ‚Ä‚ÍA’áŽü”gŽ¥ŠE‹­“x15‚‚si150ƒKƒEƒXj‚Í‹­‚·‚¬‚éB
ICNIRP
‚Ì50HzŽ¥ŠE”˜˜IŠî€’l0.2mT‚Ì75”{‚à‹­‚¢A‚±‚ê‚Å‚ÍŒ’íŽÒ‚Å‚à‰e‹¿‚ðŽó‚¯‚邱‚Æ‚É‚È‚è‚©‚Ë‚È‚¢B


‚»‚Ì‚Rj
ƒ^ƒCƒgƒ‹FSTATIC MAGNETIC FIELD HAS LITTLE EFFECT FOR GENE EXPRESSION AND LIGATION EFFICIENCY IN INVITRO.
ÃŽ¥ŠE‚͈â“`Žq”­Œ»‚ƃCƒ“ƒrƒgƒ‚É‚¨‚¯‚錋ãFŒø—¦‚ɉe‹¿‚µ‚È‚¢B
Œ¤‹†ŽÒFT. Nakahara1*, M. Yoshida*, J. Miyakoshi.
Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.

’FligationFŒ‹ãFi‚¯‚Á‚³‚Âj‚ÍAˆã—Âɂ¨‚¢‚Ä‚ÍAŠO‰È“Iˆ’u‚ÌÛ‚É—p‚¢‚ç‚ê‚ég‘̂̈ꕔ‚âˆã—Ë@Ší‚ð”›‚Á‚ČŒ肷‚é‹Zp‚Ì‚±‚ÆBŽš‚̈Ӗ¡‚Íu‚Þ‚·‚ÑA‚©‚ç‚°‚év‚±‚Æ‚Å‚ ‚邪Aˆã—Âɂ¨‚¢‚Ä‚Í“Á’è‚Ì‹Zp‚ðŽ¦‚·B


OBJECTIVE:
–Ú“I
Firstly, we attempt to clear whether strong SMF can affect a specific gene expression.
We have done DNA microarray analysis.
ʼn‚ɉäX‚Í‹­‚¢ÃŽ¥ê‚ª“Á’è‚̈â“`Žq”­Œ»‚ɉh—{‚·‚é‚©‚𖾂炩‚É‚·‚邱‚Æ‚É‚µ‚½B
‰äX‚Í‚c‚m‚`ƒ}ƒCƒNƒƒAƒŒƒC‰ðÍ‚ð—p‚¢‚½B

Then, one of gene expressions changing by exposure to strong SMF is analyzed by RT-PCR and western blotting.
To clear mechanisms enhancing the X-ray-induced micronucleus formation by exposure to strong SMF, we have examined effects of SMF on ligation reaction in in vitro
D
‚»‚µ‚ÄA‹­‚¢ÃŽ¥ê‚Ö‚Ì”˜˜I‚É‚æ‚Á‚Ĉâ“`Žq”­Œ»‚ª•Ï‰»‚µ‚½ˆâ“`Žq‚ðAPT-PCR–@‚ʼnðÍ‚ðs‚Á‚½B
‚wü‚Å—U“±‚³‚ꂽ”÷¬ŠjŒ`¬‚ª‹­‚¢ÃŽ¥ê”˜˜I‚É‚æ‚Á‚Ä‹­’²‚³‚ê‚郃JƒjƒYƒ€‚𖾊m‚É‚·‚邽‚ß‚ÉAƒCƒ“ƒrƒgƒ‚É‚¨‚¯‚錋ãFŒø—¦‚ÌÃŽ¥ê‚É‚æ‚é‰e‹¿‚ðŒŸ“¢‚µ‚½B

METHODS: To assay the change of gene expression, we used UniGEM Human V Ver. 2.0 (IncyteGenomics) as a DNA microarray.
•û–@Fˆâ“`Žq”­Œ»‚̕ω»‚ð‰ðÍ‚·‚邽‚ß‚ÉA‰äX‚ÍADNAƒ}ƒCƒNƒƒAƒŒ[‚Æ‚µ‚ÄUniGEM‚ðŽg—p‚µ‚½B

Human glioma cell line MO54 after SMF-exposure or sham exposure (6 hours) were used as a mRNA source.
ÃŽ¥ê”˜˜I‚à‚µ‚­‚Í‹^Ž—”˜˜IŒã‚ÉAƒqƒg_ŒoäPŽî—R—ˆ‚Ì×–EŠ”MO54‚ðAmRNA‚̃\[ƒX‚Æ‚µ‚ÄŽg—p‚µ‚½B

CONCLUSIONS: We found a little difference in gene expression by using DNA microarray analysis.
These data suggest that strong SMF, up to 10T, had a little biological effect in cultured cells.
Œ‹˜_F‰äX‚ÍADNAƒ}ƒCƒNƒƒAƒŒ[‰ðÍ‚ðŽg‚¤‚±‚Æ‚ÅAˆâ“`Žq”­Œ»‚ɬ‚³‚ȕω»‚ðŒ©o‚µ‚½B
‚±‚ÌŒ‹‰Ê‚ÍA10T‚É‹y‚Ô‹­‚¢ÃŽ¥ê‚ÍA×–E‚Ì”|—{‚Ì’†‚ÅA¬‚³‚ȶ‘̉e‹¿‚ª‚ ‚邱‚Æ‚ðŽxŽ‚µ‚Ä‚¢‚éB

‚»‚Ì4j@@
ƒ^ƒCƒgƒ‹F7-3FFDTD DERIVED SAR DISTRIBUTIONS IN VARIOUS SIZE HUMAN HEAD MODELS EXPOSED TO SIMULATED CELLULAR TELEPHONE HANDSET TRANSMITTING 600mW AT 835‚lHz.

835MHz‚Å600‚‚v‚ÌŒg‘Ñ“d˜b’[––‚©‚ççtŽË‚³‚ê‚é“d”g‚ð–Í‹[‚µ‚½“dŽ¥ŠE”˜˜I‚ɑ΂·‚éŠeŽíl‘̃‚ƒfƒ‹‚É‚¨‚¯‚éSAR‚Ì•ª•z‚ÌFDTD‚É‚æ‚é‰ðÍ
Œ¤‹†ŽÒFA.W. Guy, C.K. Chou, and G. Bit-Babik.
University of Washington (Emeritus), Seattle,
@WA 98195, USA.
Motorola Florida Research Laboratories, Fort Lauderdale, Florida 33322, USA.

INTRODU
CTION: Gandhi et al. (1996) have shown higher peak SARs and deeper penetration in smaller head models exposed to cell phones.
Schönborn et al. (1998) found no significant differences between adults and children.
Gandhi and Kang (2001) reconfirmed their 1996 observations.
Gandhifs results have been widely cited by the media and used by many as one
of the reasons that children should minimize using cell phones.
Gandhi
‚ç‚Í1996”N‚ÉAŒg‘Ñ“d˜b’[––‹@‚©‚ç‚Ì“d”g‚ɬ‚³‚¢“ª‚Ì“ª•”ƒ‚ƒfƒ‹‚É‚¨‚¢‚ÄA‚æ‚è‚‚¢‚r‚`‚q‚ÆA‚æ‚è[‚¢Z“§[‚³‚ð•ñ‚µ‚½B
Schönborn
‚ç‚ÍŽq‹Ÿ‚Æ‘ål‚ÌŠÔ‚ÉA—LˆÓ‚È·ˆÙ‚Í‚È‚¢‚±‚Æ‚ðŒ©o‚µ‚½B
Gandhi and Kang
‚Í1998”NA1996”N‚̔ނç‚ÌŠÏŽ@‚ÌÄŠm”F‚ð‚¨‚±‚È‚Á‚½B
Gandhi
‚ÌŒ‹‰Ê‚ÍAƒƒfƒBƒA‚ÉL‚­ˆø—p‚³‚êAŽq‹Ÿ‚ÌŒg‘Ñ“d˜bŽg—p‚ð§ŒÀ‚·‚ׂ«‚Æ‚¢‚¤Žå’£‚Ì——R‚̈ê‚‚ɂà‚È‚Á‚Ä‚¢‚éB

RESULTS: Main results are summarized in the table (SAR in W/kg).
Œ‹‰ÊFŽå‚ÈŒ‹‰Ê‚ðˆÈ‰º‚É‚Ü‚Æ‚ß‚ÄŽ¦‚·ASAR‚ÍW/kg

 

Adult

10-year old

5-year old

Peak SAR in a voxel

7.66

9.78

7.97

1-g peak SAR in head

3.81

3.93

3.43

Penetration depth (cm)

4.58

5.14

4.77

 

CONCLUSIONS: Œ‹˜_
There are small differences in the peak 1-g SARs (used for compliance limit) or depths of penetration for the three exposed heads.
3
ƒ‚ƒfƒ‹ŠÔ‚Ƀs[ƒN1gSAR‚ÆZ“§[‚³‚ɂ킸‚©‚È·ˆÙ‚Í‚ ‚éB

From these results, we conclude that the 1-g peak SAR and penetration depth in head models exposed to 835MHz cell phones do not significantly differ in adult and child heads.
‚±‚ê‚ç‚ÌŒ‹‰Ê‚©‚çA“ª•”ƒ‚ƒfƒ‹‚É835MHz‚ÌŒg‘Ñ“d˜b‚Ì“d”g‚É”˜˜I‚µ‚½ŽžA1gSAR‚ÆZ“§[‚³‚ÉA¬l‚ÆŽq‹Ÿ‚ÌŠÔ‚É—LˆÓ‚È·ˆÙ‚Í‚È‚¢‚ÆAŒ‹˜_•t‚¯‚½B

‚»‚Ì5j
17-4: SLEEPING DISORDERS AND DEPRESSIVE SYMPTOMS IN WOMEN LIVING NEAR A 735KV LINE.
735kV
‘—“dü‚Ì‹ß–T‚ÉZ‚Þ—«‚̇–°áŠQ‚Æ‚¤‚•a
P. Levallois, M. Dumont, R. Boyer, D. Gauvin, S. Gingras.
Unité de recherche en santé
@publique, Centre Hospitalier Universitaire de Québec, Beauport, (Québec) Canada

Recently, we found that aged and overweight women living near high power lines had lower sulfa-toxy-melatonin excretion (Levallois et al 2001).
The objective of this study was to compare symptoms of insomnia and depression in women living near and far away from a high powerline
D
Å‹ßA‰äX‚Í‚ˆ³‘—“dü‚Ì‹ß‚­‚ÉZ‚Þ˜V—î‚ʼnߑÌd‚Ì—«‚̃Tƒ‹ƒtƒ@ƒgƒLƒVƒƒ‰ƒgƒjƒ“iBEMSJ’F”A’†‚É”ro‚³‚ê‚郃‰ƒgƒjƒ“‚Ì‘ãŽÓ•¨j‚Ì”rŸ•‚ª­‚È‚¢‚±‚Æ‚ðŒ©o‚µ‚½i2001”N‚Ì•MŽÒ‚ç‚ÌŒ¤‹†jB
–{Œ¤‹†‚Ì–Ú“I‚ÍA‚ˆ³‘—“dü‚©‚ç—£‚ꂽŠ‚Æ‹ß‚¢Š‚ÉZ‚Þ—«‚Ì•s–°Ç‚Æ‚¤‚•a‚Ì”äŠr‚ð‚¨‚±‚È‚Á‚½B

METHODS:
•û–@
In the Québec city area, 221 living within 200 meters of a 735kV line and 195 women living at least 400 meters from any power lines were recruited.
ƒPƒxƒbƒNŽs“à‚ÅA735‚‹V‘—“dü‚Ì200mˆÈ“à‚ÉZ‚Þ221–¼‚ÆA‘—“dü‚©‚ç400mˆÈã—£‚ê‚ÄZ‚Þ—«400–¼‚ðW‚ß‚½B

Participants, aged between 20 and 74, were required to wear an EMDEX Lite meter for 36 hours to measure personal exposure to extremely low frequency magnetic field and residential exposure to extremely low frequency electric field was assessed by spot measurements.
‹¦—ÍŽÒ‚Í”N—î20΂©‚ç74ÎA’áŽü”gŽ¥ŠE‚Ö‚ÌŒÂl”˜˜I‚𑪒肷‚邽‚ß‚ÉA˜‚ÉEMDEXƒ‰ƒCƒg‚Æ‚¢‚¤Ž¥ŠE‘ª’èŠí‚ðŽæ‚è•t‚¯‚é—l‚É—v‹‚³‚ꂽB‚Ü‚½AZŠÂ‹«‰º‚É‚¨‚¯‚é’áŽü”g“dŠE‹­“x‚̓Xƒ|ƒbƒg‘ª’è‚Å•]‰¿‚µ‚½B

RESULTS:
Œ‹‰Ê
Magnetic field exposure over 24 hours was three times higher for women living near a power line than women living farther away (p<0.001) and residential electric field intensity was nearly twice in those living near the line (p<0.001).
24
ŽžŠÔˆÈã‚ÌŽ¥ŠE”˜˜I—Ê‚Í‘—“dü‚Ì‹ß‚­‚ÉZ‚Þl‚ÍA‰“‚­‚ÉZ‚Þl‚Ì3”{‚Å‚ ‚Á‚½B‚»‚µ‚ÄAZŠÂ‹«‰º‚Ì“dŠE‹­“x‚ÍA‘—“dü‚Ì‹ß‚­‚Él‚Í–ñ2”{‚Ì‹­‚³‚Å‚ ‚Á‚½B

Sleeping disorders and particularly, <wake up feeling tired> was more frequent in the last month for those living near the line (OR=2.25, 95%CI:1.19-4.28) but no dose-response relationship was found with magnetic or electric intensity.
‡–°áŠQ‚Æ“Á‚Éu‹N°Žž‚É‚¾‚é‚¢Š´‚¶v‚ªA‘—“dü‹ß–T‚ÉZ‚Þl‚ł͉ߋŽ1‚©ŒŽŠÔ‚Ì•p“x‚ª‘½‚©‚Á‚½B
‚µ‚©‚µAŽ¥ŠE‚Æ“dŠE‹­“x‚Æu—Ê|”½‰žŠÖŒWv‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B

This result was not explained by other variables taken into account.
‚±‚ÌŒ‹‰Ê‚ÍAl—¶‚É“ü‚ꂽ—lX‚È•Ï”i—v‘fj‚Å‚Íà–¾‚ª‚‚©‚È‚¢B

CONCLUSIONS: No effect on depressive symptoms was found in association with exposure to electric
@and magnetic fields.
Œ‹˜_F•s–°Ç‚Æ“dŠEEŽ¥ŠE‚Ö‚Ì”˜˜I‚Æ‚ÌŠÖ˜A‚ðŽ¦‚·Œø‰Ê‚ÍŒ©‚‚©‚ç‚È‚©‚Á‚½B

‚»‚Ì‚Uj
ƒ^ƒCƒgƒ‹FP-37F10mW/cm2 LEVEL OF EMF IN STANDARDS OF RUSSIA AND 1000mW/cm2 LEVEL IN ICNIRP'S RECOMMENDATIONS (experimental studies for the characterising of these differences).
ƒƒVƒA‚Ì“dŽ¥ŠE‹K’è‚Ì10mW/cm2‚ÆICNIRP„§‚Ì1000mW/cm2 i‚±‚ê‚ç‚Ì·ˆÙ‚̈Ӗ¡•t‚¯‚ÉŠÖ‚·‚éŽÀŒ±“I‚ÈŒ¤‹†j
Œ¤‹†ŽÒGYu. Grigoriev, V.S. Stepanov, L.A. Tomashevskaya, A.V. Shafirkin, A.L. Vasin.
State Research Center-Institute of Biophysics, Moscow, Russia.

OBJECTIVES and METHODS:
–Ú“I‚Æ•û–@
Presented results of two groups of base studies were used for standards establishing in the USSR.
ˆÈ‰º‚ÉŽ¦‚·2ŒQ‚ÌŠî‘bŒ¤‹†‚ÍAUSSR‚É‚¨‚¯‚éŠî€ô’è‚ÉŽg‚í‚ꂽ‚à‚Ì‚Å‚ ‚éB

The first group: five experiments with chronic exposure of EMF 850-1750 MHz in anechoic chamber with the frequency modulation of 400 Hz and with continues wave (CW) were held.
‘æ1ŒQ‚É5‚‚̌¤‹†‚ÍA“d”gˆÃŽº‚Å850-1750MHz‚Ì“dŽ¥ŠE‚ðA400Hz‚ÅŽü”g”•Ï’²‚ƘA‘±”g‚ð—p‚¢‚½–«”˜˜I‚Ås‚Á‚½B
Power density was 10, 20, 50, 100, 140 and 500mW/cm2.
“d—Í–§“x‚Í10A20A50A100A140A500W/cm2‚Å‚ ‚éB

Time of exposure was 6, 12 and 16 hours in a day during 4 months.
”˜˜IŽžŠÔ‚ÍA1“ú6A12A16ŽžŠÔ‚ÅA4ƒJŒŽŠÔs‚Á‚½B
1150 rats were used in the experiment.
1150
•C‚̃‰ƒbƒg‚ªŽÀŒ±‚ÉŽg—p‚³‚ꂽB

Physiological, biochemical, immunological methods were applied in the experiments; generative function was evaluated.
¶—Šw“IA¶‰»Šw“IA–ƉuŠw“I‚ÈŽè–@‚ªÌ—p‚³‚êA¶B‹@”\‚ª•]‰¿‚³‚ꂽB

The second group: eleven experiments with chronic exposure of EMF 2375 - 2750 MHz in anechoic chamber with the modulation frequency of 400 Hz and with CW were held.
‘æ2‚ÌŒ¤‹†ƒOƒ‹[ƒvF“d”gˆÃŽº‚ÅA˜A‘±”g‚Æ‚S‚O‚OHzU••Ï’²‚³‚ꂽ2375-2750MH‚š‚Ì“dŽ¥ŠE‚Ö‚Ì’·Šú”˜˜I‚ÉŠÖ‚·‚é11‚ÌŽÀŒ±‚ªs‚í‚ꂽB
Power density was 1, 10, 50, 100, 500, 1000 and 2500mW/cm2.
“d—Í–§“x‚Í1, 10, 50, 100, 500, 1000‚Æ2500mW/cm2‚Å‚ ‚éB

Time of exposure was 6 -16 hours in a day during 1-4 months.
”˜˜IŽžŠÔ‚ÍA1-4ƒJŒŽ‚ɂ킽‚Á‚ÄA1“ú‚É6-16ŽžŠÔ‚Å‚ ‚éB

Exposure has continued from 1 to 45 days for the evaluation of possible cumulative effects.
”˜˜I‚ÍA’~Ï‚³‚ê‚Ä‚¢‚­‰e‹¿‚ª‚ ‚é‰Â”\«‚àŠm”F‚·‚邽‚ß‚ÉA1‚©‚ç45“úŠÔ‚̘A‘±”˜˜I‚Å‚ ‚éB

The series of experiments was conducted to investigate EMF influence in rats' foetus development which were exposed during the whole period of pregnancy (from 1 to 19 days).
‘S”DPŠúŠÔ’†i‚P‚©‚ç19“ú–Új‚É“dŽ¥”g”˜˜I‚µ‚½ƒ‰ƒbƒg‚Ì‘ÙŽ™‚Ì”­ˆç‚É‚¨‚¯‚é“dŽ¥”g‚̉e‹¿‚𒲂ׂ邽‚ß‚É•¡”‚ÌŽÀŒ±‚ªs‚í‚ꂽB

’FFoetus;‘ÙŽ™ (”DP‚WTŠÔŒã‚©‚çoŽY‚Ü‚Å

2170 rats were used in experiments.
2170
•C‚̃‰ƒbƒg‚ª—p‚¢‚ç‚ꂽB
Methods used were the same as in the first group.
ŽÀŒ±•û–@‚ÍA‘æ1ŽÀŒ±ƒOƒ‹[ƒv‚Æ“¯‚¶‚Å‚ ‚éB

Cytology results and data of progeny study were presented.
×–EŠw“I‚ÈŒ‹‰Ê‚ÆA”DPŒ¤‹†‚̃f[ƒ^‚ðŽ¦‚·B

BEMSJ’GƒƒVƒA‚ÌŒµ‚µ‚¢‹K’è‚̘_‹’‚ª–¾‚ç‚©‚É‚È‚Á‚½‚ªA‚±‚Ì—\e‚É‚ÍŠÌS‚ÌŒ¤‹†Œ‹‰Ê‚ªŽ¦‚³‚ê‚Ä‚¢‚È‚¢‚µAˆø—pEЉ‚ê‚Ä‚¢‚éUSSRŽž‘ã‚ÌŒ¤‹†˜_•¶–¼‚È‚Ç‚Ìî•ñ‚Í‹LÚ‚³‚ê‚Ä‚¢‚È‚¢B


‚»‚Ì7)
ƒ^ƒCƒgƒ‹FP-59@DECREASED SURVIVAL FOR CHILDHOOD LEUKAEMIA PROXIMITY TO TV TOWERS.
ƒeƒŒƒr•ú‘—“ƒ‚É‹ßÚ‚µ‚½¬Ž™”’ŒŒ•aŠ³ŽÒ‚ÌŽ€–S—¦‚̒ቺ
Œ¤‹†ŽÒFB. Hocking, I. Gordon.
Camberwell, Vic, Australia 3124. 2Statistical Consulting Centre, University of Melbourne Parkville Vic Australia 3052.

OBJECTIVE:
In a previous study we reported an increased risk of childhood leukemia in municipalities proximate to TV towers in north Sydney compared with more distant ones (Hocking B, Gordon I, Hatfield G, Grain H, Cancer incidence and proximity to TV towers Med J Aust 1996; 165: 601-605).
‰äX‚͈ȑO‚ÉA–kƒVƒhƒj[’n‹æ‚̃eƒŒƒr‘—M“ƒ‚É‹ßÚ‚·‚é’¬‚ÍA‚æ‚è—£‚ꂽ’¬‚É”ä‚ׂÄA¬Ž™”’ŒŒ•a‚̃ŠƒXƒN‚ª‘‰Á‚·‚é‚ÆA•ñ‚µ‚½i1996”N‚̘_•¶jB

The rate ratio for incidence, comparing the inner ring of municipalities to the outer ring, was 1.55 (95% confidence interval 1.00 – 2.41) and for mortality the rate ratio was 2.74 (95% confidence interval 1.42 – 5.27).
•ú‘—“ƒ‚ð’†S‚Æ‚µ‚Ä“à‘¤‚É‚ ‚é’¬‚Å‚ÍAŠOŽü‚É‚ ‚é’¬‚É”ä‚ׂÄAœëŠ³—¦”ä‚Í1.55i95%M—Š‹æŠÔ7F1.00-2.41j‚Å‚ ‚èAŽ€–S—¦”ä‚Í2.74i95%M—Š‹æŠÔF1.42-5.27j‚Å‚ ‚Á‚½B

The objective of the current study was to analyze the survival experience of the cases in detail, to determine whether there are differences between the two populations
–{Œ¤‹†‚Ì–Ú“I‚ÍAÇ—á‚̶‘¶—¦‚ðÚׂɉðÍ‚µA“ñ‚‚ÌW’cŠÔ‚É·ˆÙ‚ª‚ ‚é‚©‚ðŒ©‹É‚ß‚é‚±‚Æ‚É‚ ‚éB

METHODS:
•û–@
Survival data on cases diagnosed from 1972-93 were analyzed.
1972
”N‚©‚ç1993”NŠÔ‚Éf’f‚³‚ꂽǗá‚̶‘¶—¦‚ð‰ðÍ‚µ‚½B

Data on all cases who survived for less than one month were verified by the NSW cancer registry and one case diagnosed at autopsy excluded. Data were described by Kaplan-Meier curves.
­‚È‚­‚Æ‚à1‚©ŒŽˆÈã‚̶‘¶ŠúŠÔ‚Å‚ ‚Á‚½‚·‚ׂĂÌÇ—á‚ðNSWB‚̃Kƒ““o˜^ƒf[ƒ^‚ÅŠm”F‚µ‚½B

ƒf[ƒ^‚ÍKaplan-Meier‹Èü‚ÅŽ¦‚³‚ꂽB

RESULTS:
There were 123 diagnosed cases of acute lymphatic leukemia (ICD-9 204.0) of which 29 (16 deaths) were in the inner ring of municipalities and 94 (34 deaths) were in the outer ring.
‹}«”’ŒŒ•a‚Æf’f‚³‚ꂽ123‚ÌÇ—á‚ÍA“àŽü•”‚ÉZ‚ÞÇ—á‚Í29iŽ€–S16j‚ÅAŠOŽü•”‚ÉZ‚ÞÇ—á‚Í94iŽ€–S34j‚Å‚ ‚Á‚½B

We found a significant difference in survival (log rank: P = 0.03; Wilcoxon: P = 0.05).
¶‘¶—¦‚É—LˆÓ‚È·ˆÙ‚ª‚ ‚邱‚Æ‚É‹C‚¢‚½B
The 5-year survival in the inner ring of municipalities was 55% and in the outer ring 71% (inner 23% worse); at 10 years the survival was 33% and 62% respectively (inner 47% worse).
5
”N¶‘¶—¦‚Í“àŽü•”‚Å55%AŠOŽü•”‚Å71“i“àŽü•”23%—ò‰»jA10”N¶‘¶—¦‚Í“àŽü•”33%AŠOŽü•”62%i“àŽü•”‚Í47%—ò‰»j‚Å‚ ‚éB
After adjustment for the potential confounders using Coxfs model, the mortality rate ratio comparing the inner ring with the outer ring was found to be 2.1 (95% confidence interval: 1.1 – 4.0).
Cox
ƒ‚ƒfƒ‹‚ð—p‚¢‚½Œð—ˆöŽq‚ð’²®Œã‚ÌŠOŽü•”‚É”ä‚ׂ½“àŽü•”‚ÌŽ€–S—¦”ä‚Í2.1i95“M—Š‹æŠÔF1.1-4.0j‚Æ‚È‚Á‚½B

We were not able to control for cytogenetic abnormalities.
‰äX‚ÍA¶—Šw“I‚ȈÙí‚ð”rœ‚Å‚«‚È‚¢B

CONCLUSION:
Œ‹˜_
There was an association between proximity to the TV towers and decreased survival, among cases of childhood leukemia.
¬Ž™”’ŒŒ•a‚ÉŠÖ‚µ‚ÄAƒeƒŒƒr•ú‘—“ƒ‚É‹ßÚ‚µ‚½¶Šˆ‚ƶ‘¶—¦‚̒ቺ‚ÍŠÖ˜A‚µ‚Ä‚¢‚é‚ÆŒ¾‚¦‚éB

 

•Åƒgƒbƒv‚É–ß‚é

---

 

 

4. BEMS 2012”N@”NŽŸ‘‰ï‚Ì—\eW‚©‚ç

‹LF‚Q‚O‚P‚Q|‚P‚P|‚P‚V

ˆÈ‰º‚Ì”NŽŸ‘‰ï‚ªŠJ³‚ꂽB
–––––––––––––––––––––
The Bio electromagnetics Society
@34th Annual Meeting
June 17, 2012 - June 22, 2012
Brisbane Convention and Exhibition Centre
@Brisbane, Australia
–––––––––––––––––––––––––––––––––––––

—\eW‚©‚çAŠÖS‚Ì[‚¢Œ¤‹†•ñ‚ðˆÈ‰º‚É”²ˆ‚µ‚ÄAЉ‚éB

––––––––––––––––––––––––––––––––
1. Session O1: Epidemiology

Mobile Phone Use and Incidence of Glioma in the Nordic Countries 1979–2008: Do incidence rates corroborate case-control studies?
–k‰¢Še‘‚Ì1979|2008”N‚É‚¨‚¯‚é_ŒoäPŽî‚Ì”­¶‚ÆŒg‘Ñ“d˜b‚ÌŽg—pF”­¶—¦‚ÍÇ—á‘ÎÆŒ¤‹†‚ÌØ‹’‚È‚Ç‚É‚æ‚Á‚ÄŠm’肳‚ê‚é‚©H

Isabelle Deltour1, 2, Anssi Auvinen3, Maria Feychting4, Christoffer Johansen5, Lars Klæboe6, Risto Sankila7 & Joachim Schuz1
1
Fsection of Environment and Radiation, International Agency for Research on Cancer, Lyon, France, 69008

We analyzed annual age-standardized incidence rates in men and women aged 20 to 79 years during 1979–2008 in Nordic countries (35,250 glioma cases).
Probabilities of detecting various levels of relative risk were computed using simulations.
No clear trend change in glioma incidence rates was observed.
Several of the risk increases seen in case-control studies appear to be incompatible with the observed lack of incidence rate increase in middle-aged men, pointing to biases and errors.

ƒmƒ‹ƒfƒBƒbƒNŠe‘‚Ì35250—á‚Ì_ŒoäPŽî‚ð‘ÎÛ‚ÉA1979”N‚©‚ç2008”N‚É‚©‚¯‚ÄA20΂©‚ç79Ë‚Ü‚Å‚Ì’j—‚É‚¨‚¯‚é”NŠÔ‚Ì”N—î•Ê•W€‰»”­¶—¦‚ð‰ðÍ‚µ‚½B
‘Š‘Ί댯“x‚Ì—lX‚ȃŒƒxƒ‹‚ÌŒŸo‚̉”\«‚ðAƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ð—p‚¢‚ÄŒvŽZ‚µ‚½B
Œ‹‰Ê‚Æ‚µ‚Ä–¾Šm‚È_ŒoäPŽî‚̕ω»ŒXŒü‚Í‚Ý‚ç‚ê‚È‚©‚Á‚½B
Ç—á‘ÎÆŒ¤‹†‚ÅŒ©‚ç‚ꂽŠô‘½‚̃ŠƒXƒN‚ÍA’†”N‘w‚Ì’j«‚Ì”­¶—¦‘‰Á‚ª‚Ý‚ç‚ê‚È‚©‚Á‚½‚±‚Æ‚©‚çAŠÏŽ@‚³‚ꂽŒ‹‰Ê‚Æ•sˆê’v‚ÅAƒoƒCƒAƒX‚âŒë·‚ÆŒ¾‚¦‚éB

 

Figure 1F_ŒoäPŽî‚Ì”­¶—¦‚Ì”N•Ê„ˆÚA–k‰¢Še‘@1979”N‚©‚ç2008”N‚Ü‚Å‚ÌŠÏŽ@’l

BEMSJ
’F
ƒCƒ“ƒ^[ƒtƒHƒ“Œ¤‹†‚Å‚ÌÇ—á‘ÎÆŒ¤‹†‚Æ‘ŠŠÖ‚ªŽæ‚ê‚È‚¢B
ƒXƒEƒF[ƒfƒ“‚ÅŒg‘Ñ“d˜b‚ÌŽg—pŠJŽn‚Í1987”NA2008”N‚Ü‚Å‚Ì’ÇÕ’²¸‚Å‚ ‚é‚Ì‚ÅA”­‚ª‚ñ‚Ü‚Å10”N‚©‚©‚é‚Æ‚µ‚Ä‚àA‚à‚µˆö‰ÊŠÖŒW‚ª‚ ‚ê‚ÎA‚ª‚ñ‚Ì”­¶—¦‚Í㸂̌XŒü‚ðŽ¦‚µ‚Ä‚à‚æ‚¢‚Í‚¸‚Å‚ ‚邪AŽÀ‘Ô‚Ì”­‚ª‚ñ”­¶—¦‚Æ‚Í‘ŠŠÖ‚µ‚Ä‚¢‚È‚¢B

–––––––––––––––––––––––––––––––––––––––
2. Session O1|2@Epidemiology

Use of mobile phones and risk of brain tumours: update of Danish cohort study@
Œg‘Ñ“d˜b‚ÌŽg—p‚Æ”]Žîᇂ̃ŠƒXƒNFƒfƒ“ƒ}[ƒN‚̃Rƒz[ƒgŒ¤‹†‚ÌÅVî•ñ

Aslak Poulsen
1, Patrizia Frei1, 2, 3, 4, Christoffer Johansen1, Jørgen Olsen1, Marianne Steding-Jessen1 & Joachim Schuz1
1
FDanish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark, 2100

We investigated the risk of brain tumors among all Danish mobile phone subscribers before 1996, followed up for brain tumors until end of 2007.
The 358 403 subscription holders accrued 3.8 million person years.
Neither overall nor when restricting to subjects with 13 or more years since first subscription did we see an increased risk of brain tumors.
This large nationwide cohort study provides little evidence for a causal association between mobile phone use and brain tumors.

1996
”NˆÈ‘O‚Ƀfƒ“ƒ}[ƒN‘S“y‚ÌŒg‘Ñ“d˜b—˜—p“o˜^ŽÒ‚Ì”]ŽîᇃŠƒXƒN‚ðŒ¤‹†‚µ‚½B
2007
”N––‚Ü‚Å‚Ì’ÇÕ’²¸‚ðs‚Á‚½B
358403
–¼‚Ì—˜—pŽÒ‚ÅA3.8–œl”N‚ÌŒ¤‹†‹K–Í‚Æ‚È‚Á‚½B
‘S‘Ì‚Æ‚µ‚Ä‚àA‚Ü‚½Å‰‚Ì“o˜^‚©‚ç13”NˆÈã‚Ì“o˜^ŽÒŠÔ‚É‚àA”]Žîᇂ̃ŠƒXƒN‘‰Á‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B
‚±‚̃fƒ“ƒ}[ƒN‘S“y‚ð‘ÎÛ‚Æ‚µ‚½‘å‹K–Í‚ÈŒ¤‹†‚ÍAŒg‘Ñ“d˜b‚ÉŽg—p‚Æ”]Žîᇂ̈ö‰ÊŠÖŒW‚ðŠm—§‚·‚éŠmØ‚É‚Í‚È‚ç‚È‚¢B

–––––––––––––––––––––––––––––––––––––––
3. Session O3: In-vitro

DNA MICROARRAY ANALYSIS OF KERATINOCYTE@GENE EXPRESSION AFTER EXPOSURE TO 60-GHZ MILLIMETER WAVES UNDER NEAR-FIELD CONDITION@
DNAƒ}ƒCƒNƒƒAƒŒƒC‰ðÍ‚É‚æ‚é‹ß–TŠE‚Æ‚µ‚Ä‚Ì60GHz“dŽ¥ŠE”˜˜IŒã‚ÌŠpŽ¿×–Eˆâ“`Žq”­Œ»

Denis Habauzit
1, Catherine Le Quément1, Maxim Zhadobov2, Ronan Sauleau2, Denis Michel1 & Yves Le Dréan1
1
FTranscription, Environment and Cancer group, University of Rennes 1, Rennes, France, 35042

We have investigated whether human skin cells respond to high-power millimeter-waves (MMW) radiations under near-field condition.
Human skin cells were exposed 3 hours at 60.4 GHz with an average incident power density of 20mW/cm².
Using DNA microarray analysis we found 37 genes differentially expressed between the MMW exposure condition and the sham heat shock control.
These results suggest that MMW could significantly impact gene expression of cells submitted to a heat stress.

‹ß–TŠEðŒ‰º‚Å‚Ì‚o—̓~ƒŠ‚Í“dŽ¥”g‚É‚æ‚éƒqƒg‚̔畆זE‚̉ž“š‚𒲂ׂ½B
60.4GHz
‚Ì“dŽ¥”gi•½‹ÏÆŽË“d—Í–§“x‚ð20mW/cm2j‚ð3ŽžŠÔ”˜˜I‚µ‚½B
ƒ~ƒŠ”g”˜˜IE‹^Ž—”˜˜IE”MƒVƒ‡ƒbƒN‚É‚æ‚é‘ÎÆŒQ‚ÌŠÔ‚ÅA37‚̈â“`Žq”­Œ»‚É·ˆÙ‚ª‚Ý‚ç‚ꂽB
‚±‚ê‚̓~ƒŠ”g‚ª”畆זE‚É”MƒXƒgƒŒƒX‚ð—^‚¦Aˆâ“`Žq”­Œ»‚ɉe‹¿‚ð—^‚¦‚Ä‚¢‚éB

Long Abstract
Primary human skin cells were exposed 3 hours at 60.4 GHz with an average incident power density of 20mW/cm².
The average and peak SAR over the cell monolayer were 594 W/kg and 1233 W/kg, respectively.
”畆זE‚É60.4GHz‚Ì“dŽ¥”g‚ð3ŽžŠÔ”˜˜I‚µ‚½A•½‹ÏÆŽË“d—Í–§“x‚Í20mW/cm2B
×–E‚Ì1‘w‚Ö‚Ì•½‹ÏSAR‚Í594W/kgAƒs[ƒNSAR‚Í1233W/kg‚Å‚ ‚éB

In this case, the exposure induces a significant increase of the culture medium temperature (from 35‹C to 43‹C).
‚±‚Ìê‡A”˜˜I‚É‚æ‚Á‚Ä×–E”|—{‰t‚̉·“x‚Í35“x‚©‚ç43“x‚Ü‚Å㸂µ‚Ä‚¢‚éB

Our results demonstrate that MMW radiation does not induce any significant modification in gene expression when the physiological cell temperature is artificially maintained at 35‹C.
×–E‚̉·“x‚ð35“x‚ÉlH“I‚Ɉê’è‚É‚µ‚½ê‡Aƒ~ƒŠ”g”˜˜I‚Å—LˆÓ‚Ȉâ“`Žq”­Œ»‚̕ω»‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B

Nevertheless, comparing MMW-induced increase of cells temperature, with heat-shocked sham (both at 43‹C), 37 genes are detected as differentially expressed with a fold change above 2.
These results seem to evidence that MMW could impact gene expression when cells are under a heat stress.
ˆê•û‚ÅA”MƒVƒ‡ƒbƒN‚Æ‚µ‚Ä43“x‚Ü‚Åã‚°‚½ê‡A37‚̈â“`Žq”­Œ»‚É2”{ˆÈã‚̕ω»‚ªŒ©‚ç‚ꂽB
‚±‚Ì‚±‚Æ‚©‚çƒ~ƒŠ”g”˜˜I‚͔畆‚Ì”MƒXƒgƒŒƒX‰º‚ÅAˆâ“`Žq”­Œ»‚ɕω»‚ª‹N‚±‚é‚Æ‚¢‚¦‚éB

BEMSJ
’F
‰·“x‚ª8“x‚à㸂·‚éðŒ‚ł͈â“`Žq”­Œ»‚ɕω»‚ªŒ»‚ê‚éB
‰·“x‚ðã‚°‚È‚¢‚悤‚É—â‹p‚µ‚Ä“dŽ¥”g‚É”˜˜I‚µ‚½ê‡‚ÍAˆâ“`Žq”­Œ»‚ɕω»‚Í‚È‚¢B
‚æ‚Á‚ÄAˆâ“`Žq”­Œ»‚Í”M“I‚Èì—p‚ÆŒ¾‚¦‚éB
‰·“x‚¾‚¯‚ðã‚°‚ÄA“¯‚¶‰·“x㸂ɂµ‚½ê‡‚Í‘S‚­“¯‚¶‚Å‚Í‚È‚¢‚Ì‚ÅA‰·“x‚ªã‚ª‚邾‚¯‘å‚«‚È”˜˜I‚ª‚ ‚ê‚ÎA“dŽ¥”g‚̉e‹¿‚ªŒ»‚ê‚é‚Æ‚¢‚¦‚éB

–––––––––––––––––––––––––––––––––––
4. Session PA: Poster Session A
Comparison of Specific Absorption Rate (SAR) Induced In Brain Tissues of Child and Adult Using Mobile Phone
Œg‘Ñ“d˜b‚ÌŽg—p‚É‚æ‚é‘ål‚ÆŽq‹Ÿ‚Ì”]“à‘gD‚É—U“±‚³‚ê‚éSAR‚Ì”äŠr

Mai Lu1 & Shoogo Ueno2
1
FKey Lab. of Opt-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, China, 730070

In this study, two children and one adult head models have been employed to calculate the specific absorption rate (SAR) in brain tissues by finite-difference time-domain method.
It was found that there is a deeper penetration of absorbed SAR in child head.
The induced SAR can be significantly higher in subregions of child brain.
‚±‚ÌŒ¤‹†‚Å‚ÍA1‚‚̑ål‚Ì“ª•”‚ÆA“ñ‚‚̎q‹Ÿ‚Ì“ª•”‚ð—p‚¢‚ÄA”]“à‘gD‚É—U“±‚³‚ê‚éSAR‚ðFDTD–@‚ʼnðÍ‚µ‚½B
Žq‹Ÿ‚Ì”]‚Å‚Í‹zŽû‚³‚ê‚éSAR‚Í”][•”‚É’B‚µ‚Ä‚¢‚邱‚Æ‚ª”»‚Á‚½B
—U“±‚³‚ê‚éSAR‚ÍŽq‹Ÿ‚Ì”]‚Ì‹ÇŠ‚É‚¨‚¢‚Ä‘å‚«‚­‚È‚Á‚Ä‚¢‚éB

Long Abstract
‚©‚çˆê•”ˆø—p
A generic handset (known as IEEE mobile phone) was modeled in this study.
The length of the monopole antenna is 38 cm at 1750 MHz.
The antenna is mounted on a conductive box with lateral dimensions 40 mm
~ 100 mm, and thickness 20 mm.
IEEE
Œg‘Ñ“d˜b‚Æ‚µ‚Ä’m‚ç‚ê‚Ä‚¢‚éŒg‘Ñ’[––‚ð—p‚¢‚½B
ƒ‚ƒmƒ|[ƒ‹ƒAƒ“ƒeƒi‚Í1750MHz‚Å’·‚³‚Í38cmB40X100mm‚Å[‚³20mm‚Ì“±“d«‚Ì” ‚ÉŽæ‚è•t‚¯‚½B
ƒ‚a‚d‚l‚r‚i’F38cm‚̃‚ƒmƒ|[ƒ‹‚Æ‚ ‚邪A”g’·‚©‚çl‚¦‚Ä3.8cm‚̊ԈႢ‚Å‚ ‚낤B‚Ç‚Ì’ö“x‚Ì“d—Í‚Æ‚µ‚½‚Ì‚©‹Lq‚Í‚È‚¢B„

SAR10g in child brains are higher than the corresponding values in adult brain.
However in both child and adult brains, SAR10g is well below 2 W/kg, the safety level defined in IEEE standard.
‘ål‚ÌꇂÌSAR‚É”ä‚ׂÄAŽq‹Ÿ‚Ì10g‚ ‚½‚è‚ÌSAR‚Í‘å‚«‚¢B
‚µ‚©‚µAIEEE‚Ì‹K’è‚É‚ ‚éˆÀ‘SŠî€10g‚ ‚½‚è‚ÌSAR@2W/kg‚É”ä‚ׂé‚Æ\•ª‚É’á‚¢B

 

Figure 1F“ª•”ƒ‚ƒfƒ‹@ (a) 6Ë’jŽ™ (b) 11Ë—Žq (c) 34Ë’j«

Figure 2FSAR‚Ì•ª•z‚̈Ⴂ@(a) 6Ë’jŽ™ (b) 11Ë—Žq (c) 34Ë’j«

 

Table 2FSAR10g (W/kg) ‚Ì”äŠr@

 

–––––––––––––––––––––––––––––––––
5. Session PA: Poster Session A @‚o‚`‚Q‚X@

Recall Accuracy of Laterality of Mobile Phone Call: A Validation Study Using Software Modified Phone in Japan
Œg‘Ñ“d˜b‚ŒʘbŽž‚É‚Ç‚¿‚ç‚ÌŽ¨‚ÅŽg—p‚·‚é‚©AŽv‚¤o‚µ‚̳Šm«F“ú–{‚É‚¨‚¯‚éƒ\ƒtƒgƒEƒGƒA‚ʼnü—Ç‚µ‚½“d˜b‚ð—p‚¢‚½Šm”FŒ¤‹†

Kosuke Kiyohara1, Kanako Wake2, Soichi Watanabe2, Takuji Arima2, 3, Daisuke Furushima1, Yasuto Sato1, Noriko Kojimahara1, Masao Taki2, 4 & Naohito Yamaguchi1
1
FTokyo Womenfs Medical University, Japan

We evaluated the accuracy of self-reported laterality of mobile phone calls, using Software Modified Phones (SMPs) which can log the use of right or left ear during a call.
100 mobile phone users aged 18-24 were required to use a SMP for one month.
Subsequently, a questionnaire survey was conducted.
The agreement between SMP record and self-reported laterality was fair for both outgoing (ƒÈ=0.4) and incoming (ƒÈ=0.4) calls.
The results of the epidemiological studies based on self-reported mobile phone use should be carefully interpreted.

ƒ\ƒtƒgƒEƒGƒA‚ð‰ü—Ç‚µ‚½“d˜b‹@‚ð—p‚¢‚ÄAŒg‘Ñ“d˜bŽg—pŽž‚É‚Ç‚¿‚ç‚ÌŽ¨‚Åi“ª•”‚Ì‚Ç‚¿‚ç‚Ì‘¤–Ê‚ÅjŽg—p‚µ‚½‚©‚ÉŠÖ‚·‚鎩ŒÈ\‚̳Šm«‚𒲸‚µ‚½B
Œg‘Ñ“d˜b‚ð‰E‘¤‚ÅŽg‚¤‚©¶‘¤‚ÅŽg‚¤‚©‚ð‹L˜^‚Å‚«‚éŒg‘Ñ“d˜b‚ðŽg—p‚µ‚ÄA18΂©‚ç24΂Ì100–¼‚É1‚©ŒŽŠÔ‚Ì‚±‚Ì“d˜b‚ðŽg‚Á‚Ä‚à‚ç‚Á‚ÄA—˜—p󋵂𒲂ׂ½B
Ž©ŒÈ\‚Å‚Ç‚¿‚ç‚©‚ÅŽg—p‚µ‚Ä‚¢‚é‚©‚Ìî•ñ‚𓾂½B
Œ‹‰Ê‚ÍA‰ü—Ç“d˜b‚É‹L˜^‚³‚ꂽŽÀÛ‚ÌŽg—p‘¤–Ê‚ÆA•ñ‚³‚ꂽŽg—p‘¤–Ê‚Æ‚ÌŠÖŒW‚ÍA“d˜b‚ÌŽóMŽž‚Å‚àA‘—MŽž‚Å‚àA‚Æ‚à‚Ɉê’v“x‚Í‹É‚ß‚Ä’á‚©‚Á‚½i‘ŠŠÖŒW”F0.4jB
–{Œ¤‹†‚Å‚ÍA‰uŠwŒ¤‹†‚É‚¨‚¯‚鎩ŒÈ\‚ÉŠî‚­‰uŠwŒ¤‹†‚Ì•ñ‚ðA’ˆÓ[‚­‰ðŽß‚µ‚È‚¯‚ê‚΂Ȃç‚È‚¢A‚Æ‚¢‚¤Œ‹‰Ê‚É‚È‚Á‚½B

BEMSJ
’F‚µ‚½‚ª‚Á‚ÄAŒg‘Ñ“d˜b‚ð¶‰E‚Ç‚¿‚ç‚ÅŽg—p‚µ‚½‚©‚ÆŒ¾‚¤Ž©ŒÈ\ƒf[ƒ^‚ÉŠî‚­‰uŠwŒ¤‹†‚ÌŒ‹‰Ê‚É‚Í’ˆÓ‚ª•K—v‚Å‚ ‚éB

–––––––––––––––––––––––––––––––––
6. Session PA: Poster Session A @PA33

Exposure Assessment of the Low Frequency Magnetic Fields Produced by GSM Mobile Phones
GSMŒg‘Ñ“d˜b‚É‚æ‚é’áŽü”gŽ¥ŠE”˜˜I•]‰¿

Carolina Calderon
1, Darren Addison1, Terry Mee1, Richard Findlay1 & Myron Maslanyj1
1
FPhysical Dosimetry Department, Health Protection Agency, Chilton, UK, OX110RQ

The ELF magnetic flux density of 47 mobile phones transmitting at 30 dBm in GSM 1800 MHz has been measured as part of the MOBI-KIDS epidemiological study.
Peak resultant magnetic flux density values varied from 21nT to 1178nT (217 Hz component), and the mean peak resultant magnetic flux density was of 265 } 180nT.
No obvious correlation was observed between the peak resultant magnetic flux density and specifications of the phone, although grouping phones on the basis of their magnetic flux density pattern may perhaps be possible.
Žq‹Ÿ‚ÆŒg‘Ñ“d˜b‚̉uŠwŒ¤‹†Mobi-KIDs‚̈êŠÂ‚Æ‚µ‚ÄAGSMŒg‘Ñ“d˜b1800MHzA30dBmiBEMSJ’F1Wjo—Í‚Ì47‘ä‚ÌŒg‘Ñ’[––‚©‚ç‚Ì’áŽü”gŽ¥ŠE‚𑪒肵‚½B
ƒs[ƒNŽ¥ŠE‹­“x‚Í217Hz¬•ª‚ÅA21nT‚©‚ç1178nT‚Å‚ ‚èA•½‹Ï’l‚Í265nT‚Å‚ ‚Á‚½B
ƒs[ƒNŽ¥ŠE‹­“x‚ÆŒg‘Ñ’[––‚ÌŽd—l’l‚Æ‚ÌŠÔ‚É‚Í–¾”’‚È‘ŠŠÖŠÖŒW‚ÍŒ©‚ç‚ê‚È‚©‚Á‚½B
Œg‘Ñ“d˜b‚ð’áŽü”gŽ¥ŠE‹­“x‚ŃOƒ‹[ƒv•ª‚¯‚ð‚·‚é‚±‚Æ‚ª‚Å‚«‚»‚¤‚Å‚ ‚éB

–––––––––––––––––––––––––––––––––––––
7. Session PA: Poster Session A @‚o‚`‚S‚P
Exposure Levels from Smart-meters in Residential Settings
Z‹ŠÂ‹«‚É‚¨‚¯‚éƒXƒ}[ƒgƒ[ƒ^‚©‚ç‚Ì“dŽ¥ŠE”˜˜I—Ê

Greg Gajda
1, Eric Lemay1 & Art Thansandote1
1
FConsumer & Clinical Radiation Protection, Health Canada, Ottawa, ON, Canada, K1A 1C1

Transmission rates and emission levels were measured from electric smart-meters in Ottawa Canada.
The mean total daily transmission duration was under 1 minute.
Worst–case outdoor power density levels 20 cm from the meters were 25 times below Canadian general public exposure limits while those indoors were more than one thousand times below the same limits.
Given the low transmission rates and weak strengths, emissions measured in this study were found to be a highly unlikely risk to health.
ƒJƒiƒ_‚̃Iƒ^ƒ‚Å“d—̓Xƒ}[ƒgƒ[ƒ^‚©‚ç‚Ì“dŽ¥”g‚Ì”­M—¦‚Æ”­M“d—͂𑪒肵‚½B
•½‹Ï‚µ‚½1“ú‚ ‚½‚è‚Ì—ÝŒv”­MŽžŠÔ‚Í1•ªˆÈ‰º‚Å‚ ‚Á‚½B
ň«‚ÌꇂÅA‰Æ‚ÌŠO‚Å‘ª’肵‚½ƒXƒ}[ƒgƒ[ƒ^‚©‚ç20cm‚Ì‹——£‚Å‚Ì“d—Í–§“x‚̓Jƒiƒ_‚̈ê”ÊŒöO‚Ö‚Ì”˜˜IŠî€‚Ì25•ª‚Ì‚P‚Å‚ ‚Á‚½B
‚»‚µ‚ÄA‰Æ‚Ì’†‚Å‘ª’肵‚½ê‡‚ÍAƒJƒiƒ_‚̈ê”ÊŒöO‚Ö‚Ì”˜˜IŠî€‚Ì100•ª‚Ì‚PˆÈ‰º‚Å‚ ‚Á‚½B
”­M‚ÌŠ„‡‚ª’á‚¢‚±‚Æ‚ÆA“d—Í–§“x‚ÍŽã‚¢‚±‚Æ‚©‚çA¡‰ñ‚Ì‘ª’肵‚½”­M‚ÍAŒ’NƒŠƒXƒN‚ª‚“x‚Él‚¦‚ç‚ê‚È‚¢‚Æ‚¢‚¤‚±‚Æ‚ª”»‚éB

 

Figure 2FƒXƒ}[ƒgƒ[ƒ^‚ªƒAƒp[ƒg‚È‚Ç‚ÅW‡‚µ‚ÄŽæ‚è•t‚¯‚ç‚ê‚Ä‚¢‚éꇂÌuŠÔ“I‚È“d—Í–§“xA‹@Ší‚©‚ç30cm‚̈ʒu‚Å‘ª’èB

 

––––––––––––––––––––––––––––––––
8. Session PA: Poster Session A @PA47
Prenatal Whole-Body Exposure to Electromagnetic Field does not Influence Hematopoietic Activity in Rats
•ê‘Ì‚ª‘Sg“dŽ¥ŠE‚É”˜˜I‚µ‚½Žž‚Ì‘¢ŒŒŒn‚ÌŠˆ«‚ւ̉e‹¿AƒlƒYƒ~‚Å‚ÌŽÀŒ±B

Koji Murono1, Kazuhito Sasaki1, Hironori Yamaguchi1, Hiroharu Yamashita1, Jianqing Wang2, Shoogo Ueno3, Hirokazu Nagawa 1 & Joji Kitayama1
1
FSurgical Oncology, the University of Tokyo, Tokyo, Japan, 113-8655

Pregnant SD rats were exposed to EMF (sham/ whole-body SAR = 0.08 W/Kg) from gestational day 7 to 20, 20 hours per day, and bone marrow were obtained from juvenile rats (19 day) and their components were quantitatively investigated. 
The number of hematopoetic stem cells and percentage of micronucleus in BM as well as blood cell counts in peripheral blood were not significantly altered by EMF. 
Gestational whole-body exposure to EMF did not affect the hematopoiesis of their off-springs.
”DP‚µ‚½SDŒnƒlƒYƒ~‚É“dŽ¥ŠE”˜˜I‚µ‚½A‹^Ž—”˜˜I‚Æ‘Sg”˜˜I‚ÅSAR‚ª0.08W/kg‚Ìê‡A‰ù‘Ù7“ú–Ú‚©‚ç20“ú–Ú‚Ü‚ÅA1“ú20ŽžŠÔB
19
“ú—é‚ÌŽá‚¢ƒ‰ƒbƒgœ‚Ìœ‘‚ðŽæ‚èA’è—Ê“I‚ɉðÍ‚µ‚½B
‘¢ŒŒŒn‚ÌŠî’ê×–E‚Ì”Aœ‘‚É‚¨‚¯‚é”÷¬Šj‚ÌŠ„‡A––½ŒŒ‰t‚É‚¨‚¯‚錌‰t×–E”‚ÍA“dŽ¥ŠE”˜˜I‚É‚æ‚Á‚Ä—LˆÓ‚ɕω»‚µ‚È‚©‚Á‚½B
”DPŽž‚É‚¨‚¯‚é‘Sg‚Ì“dŽ¥ŠE”˜˜I‚Ͷ‚܂ꂽ‘ÙŽ™‚Ì‘¢ŒŒŒn‚ɉe‹¿‚Í‚µ‚È‚©‚Á‚½B

Long Abstract
‚©‚ç‚Ì”²ˆ
A 2.14 GHz (Downlink) W-CDMA signal was used.
2.14GHz
‚ÌŠî’n‹Ç‚©‚ç’[––‚ÉŒü‚©‚Á‚Ä”­M‚³‚ê‚éW-CDMA‚ÌM†“d”g‚ð—p‚¢‚½B

–––––––––––––––––––––––––––––––––––––––––––––
9.
Session PA: Poster Session A ‚o‚`‚U‚T
Effects of exposure to intermediate frequency magnetic fields on Neurite@Outgrowth in PC12VG Cells
PC12VG×–E‚É‚¨‚¯‚é’†ŠÔŽü”g”Ž¥ŠE”˜˜I‚̉e‹¿

Junji Miyakoshi
1, Eijiro Narita1, Tomonori Sakurai1 & Naoki Shinohara1
1
FDivision of Creative Research and Development of Humanosphere, Kyoto University, Uji, Japan, 611-0011

In this study, we investigated the influence of a 23 kHz magnetic field at 100 ƒÊT, which is approximately 4 times higher than the reference level in the ICNIRP-2010 guidelines, on PC12VG cells neurite outgrowth in vitro.
The exposure to an IF magnetic field of 23 kHz at 100 ƒÊT for 7days has no significant effect on neurite outgrowth in PC12VG cells.
In the treated with 50 ng/ml NGF, the neurite length and the neurite-bearing cells demonstrated a significant increase of neurite outgrowth.
‚±‚ÌŒ¤‹†‚Å‚Í23kHz@100ƒÊT‚Ì’†ŠÔŽü”g”Ž¥ŠE‚̉e‹¿‚𒲂ׂ½B
‚±‚ÌðŒ‚ÍICNIRP-2010‚̃KƒCƒhƒ‰ƒCƒ“‚É‹K’è‚·‚éŽQƃŒƒxƒ‹‚É4”{ˆÈã‚Ì‹­“x‚Å‚ ‚éB
×–EŽÀŒ±‚Æ‚µ‚ÄAPC12VG×–E‚É‚¨‚¯‚é_Œo“Ë‹N‚Ì”h¶‚𒲂ׂ½B
7“úŠÔ‚Ì‚±‚Ì”˜˜IðŒ‚Å‚Í×–E“Ë‹N‚Ì”h¶‚É—LˆÓ‚ȉe‹¿‚Í‚È‚©‚Á‚½B
—z«‘ÎÆ‚Æ‚µ‚ÄNGF‚ð50ng/ml‚ð—^‚¦‚½ê‡‚ÍŽ²õ“Ë‹N‚Ì’·‚³‚ÆŽ²õ“Ë‹N—ÞŽ—‚Ì×–E‚Å‚ÍAŽ²õ“Ë‹N‚Ì”h¶‚É—LˆÓ‚È‘‰Á‚ª‚Ý‚ç‚ꂽB

––––––––––––––––––––––––––––––––––––––––
10. Session PA: Poster Session A @PA67
Effects of exposure to 21kHz magnetic fields on estrogen-regulated gene expression in MCF-7 cells
21KH‚šŽ¥ŠE”˜˜I‚É‚æ‚éMCF-7×–E‚É‚¨‚¯‚éƒGƒXƒgƒQƒ“‚ªŠÖ—^‚·‚éˆâ“`Žq”­Œ»‚ւ̉e‹¿

Yuki Ogasawara1, Masateru Ikehata2, Sachiko Yoshie2, Yukihisa Suzuki3, Satoshi Nakasono4, Chiyoji Ohkubo5 & Kazuyuki Ishii1
1
FMeiji Pharmaceutical University, Kiyose, Japan, 204-0004

To evaluate biological effects of intermediate frequency magnetic fields (IF-MF), estrogen-regulated gene expression under magnetic fields were studied using ERE-luc integrated MCF-7 cell.
Exposure to IF-MF (21 kHz, up to 3.9mT) for 24 hr did not affect luciferase activity.
Also, no significant difference in luciferase activity was observed by IF-MF exposure for 4 days although slight tendency of increase was observed.
These results suggest that IF-MF is unlikely to affect directly estrogen-regulated gene expression.
’†ŠÔŽü”g”Ž¥ŠE‚̶‘̉e‹¿‚ðŒ¤‹†‚·‚邽‚ß‚ÉAŽ¥ŠE”˜˜I‰º‚É‚¨‚¯‚éƒGƒXƒgƒƒQƒ“ŠÖ˜A‚̈â“`Žq”­Œ»‚ðAERE-luc‚ð–„‚ßž‚ñ‚¾MCF-7×–E‚ðŽg‚Á‚ÄA’²¸‚µ‚½B
21KHz‚ÅAÅ‘å3.9mTA24ŽžŠÔ‚Ì’†ŠÔŽü”g”Ž¥ŠE”˜˜I‚Å‚ÍluciferaseŠˆ«‚͉e‹¿‚³‚ê‚È‚©‚Á‚½B
‚³‚ç‚É4“ú‚Ì”˜˜I‚Å‚ÍA­‚µ‚̕ω»‚ÍŠÏŽ@‚³‚ꂽ‚ªA—LˆÓ‚ȕω»‚ÍŠÏŽ@‚³‚ê‚È‚©‚Á‚½B
‚±‚ÌŒ‹‰Ê‚ÍA’†ŠÔŽü”g”Ž¥ŠE”˜˜I‚̓GƒXƒgƒƒQƒ“‚ªŠÖ˜A‚·‚éˆâ“`Žq”­Œ»‚ɉe‹¿‚·‚é‚Æ‚ÍŒ¾‚¦‚È‚¢B

–––––––––––––––––––––––––––––––
11. Session O8: Human & Clinical
@O8-1
Perception of RF Fields Emitted from Smart Phones.
ƒXƒ}[ƒgƒtƒHƒ“‚©‚ç‚Ì‚Žü”g“dŽ¥ŠE‚ÌŠ´’m

Min Kyung Kwon1, 2, Joon Yul Choi1, 2, Sung Kean Kim1, 3, Tae Keun Yoo1, 4 & Deok Won Kim1, 2, 3, 4
1
FDepartment of Medical Engineering, Yonsei University, Seoul, Korea, 120-752

In this double-blinded study, we investigated perception with sham and real exposures in 15 electromagnetic hyper-sensitivity (EHS) and 17 non-EHS subjects using a wideband code division multiple access (WCDMA) module inserted a dummy phone.
Experiment was conducted using the module with average power of 24 dBm at 1950 MHz and the specific absorption rate of 1.57 W/kg using a headphone for 32 min.
As conclusion, there was no evidence that the EHS group perceived the electromagnetic fields better than the non-EHS group.

‚±‚Ì2d–ÓŒŸ–@‚É‚æ‚錤‹†‚Å‚ÍA15–¼‚Ì“dŽ¥”g‰ß•qÇŽÒ‚Æ17–¼‚Ì‚»‚¤‚Å‚È‚¢l‚ÉAW-CDMA•ûŽ®‚Ì“dŽ¥”g‚ð–Í‹[‚µ‚½“d˜b‚ð—p‚¢‚ÄA‹^Ž—”˜˜I‚Æ“dŽ¥ŠE”˜˜I‚É‚¨‚¯‚é“dŽ¥ŠE‚ÌŠ´’m‚𒲸‚µ‚½B
ŽÀŒ±‚Í–Í‹[‘•’u‚ð—p‚¢‚ÄA1950MHzA•½‹Ï“d—Í‚Í24dBmASAR‚Í1.57W/kg‚ÌðŒ‚ÅA32•ªŠÔs‚Á‚½B
Œ‹‰Ê‚Æ‚µ‚ÄA“dŽ¥”g‰ß•qǂ̃Oƒ‹[ƒv‚Í”ñ“dŽ¥”g‰ß•qǂ̃Oƒ‹[ƒv‚É”ä‚ׂÄA“dŽ¥ŠE‚ðŠ´’m‚·‚é‚Æ‚¢‚¤ŠmØ‚Í“¾‚ç‚ê‚È‚©‚Á‚½B

––––––––––––––––––––––––––––
12. Session PB: Poster Session B @PB46
Effects of abdominal local exposure of intermediate frequency (21kHz) magnetic fields on fetal development in rats
’†ŠÔŽü”g”“dŽ¥”g‚Ì• •”‚Ö‚Ì‹ÇŠ”˜˜I‚É‚æ‚é‘ÙŽ™‚Ì”­ˆç‚ւ̉e‹¿AƒlƒYƒ~‚Å‚ÌŽÀŒ±

Akira Ushiyama1, Shin Ohtani2, Machiko Maeda2, Yuki Hirai3, Yukihisa Suzuki3, Keiji Wada3, Naoki Kunugita1 & Chiyoji Ohkubo4
1
FDepartment of Environmental Health, National Institute of Public Health, Wako, Japan, 351-0197

Due to the lack of science based evidences of exposure effects of intermediate frequency magnetic fields (IF-MFs), we teratologically evaluated them by using pregnant rats.
Using newly-devised in vivo exposure apparatus which can expose IF-MFs locally to the abdomen of rats being similar exposure conditions with pregnant women standing close to induction heating (IH) cooking hob.
Obtained data are currently under analysis.
’†ŠÔŽü”g”Ž¥ŠE‚Ì”˜˜I‚É‚æ‚é‰e‹¿‚ÉŠÖ‚·‚é‰ÈŠw“I‚ÈŠmØ‚ª­‚È‚¢‚Ì‚ÅA”DPƒlƒYƒ~‚ð—p‚¢‚ÄAŠïŒ`Šw“I‚É•]‰¿‚ðs‚Á‚½B
”DP—«‚ª‚h‚g’²—Ší‚Ì‘O‚É—§‚Á‚½ðŒ‚Æ—ÞŽ—‚ÌðŒ‚É‚È‚é‚悤‚ÉAƒlƒYƒ~‚Ì• •”‚ª‹ÇŠ“I‚ÉŽ¥ŠE‚É”˜˜I‚·‚é‚悤‚È”˜˜I‘•’u‚ðV‹K‚É쬂µ‚½B
“¾‚ç‚ꂽƒf[ƒ^‚ÉŠÖ‚µ‚Ä‚ÍŒ»ÝA‰ðÍ’†‚Å‚ ‚éB

Long Abstract
‚©‚çˆê•””²ˆ
We set MFs intensity to 10.3 mT at the center of abdominal surface. Exposure (or sham exposure) was done for 1hr/day from gestation day 7 up to 17.
Ž¥ŠE‚Í• •”‚Ì•\–Ê’†‰›•”‚Å10.3‚‚s‚Ì‹­“x‚Éݒ肵‚½B
”˜˜IE‹^Ž—”˜˜I‚͉ù”D7“ú–Ú‚©‚ç17“ú–Ú‚Ü‚Å1“ú1ŽžŠÔ‚Ì”˜˜I‚Æ‚µ‚½B

We examined numeral dosimetry using a pregnant rat model of gestation day 16 rat. Under the exposure conditions described above, induced electric field of each fetus ranged between 0.611 to 5.74 V/m (mean 3.01V/m) depending on the relative position to the spiral coil.
The mean value is higher than the basic restriction to general public exposure (2.83 V/m at 21 kHz) of ICNIRP Guidelines [3].
‰ù”D16“ú–Ú‚Ì”DPƒlƒYƒ~‚ðƒ‚ƒfƒ‹‚É”’l‰ðÍ‚Å”˜˜I‚𒲂ׂ½B
‚±‚ÌŒ¤‹†‚Å‚Ì”˜˜IðŒ‚Å‚Í‚»‚ꂼ‚ê‚Ì‘ÙŽ™‚É—U“±‚³‚ê‚é“dŠE‹­“x‚ÍŽ¥ŠEƒRƒCƒ‹‚Æ‚Ì‘Š‘ΓI‚Ȉʒu‚É‚æ‚Á‚Ä0.611‚©‚ç5.74V/m‚͈̔͂ɂ ‚èA•½‹Ï’l‚Í3.01V/m‚Å‚ ‚Á‚½B
‚±‚Ì•½‹Ï’l‚Í‚h‚b‚m‚h‚q‚oƒKƒCƒhƒ‰ƒCƒ“‚É‹K’è‚·‚éˆê”ÊŒöO‚Ö‚ÌŠî‘bŽwj’li21KHz‚Å‚Í2.83V/mj‚ð’´‚¦‚Ä‚¢‚éB

–––––––––––––––––––––––––––––––––
13. Session ENA: ENA Workshop
@@ENA-1
An Australian measurement survey of RF and ELF emissions from Smart Meters
ƒI[ƒXƒgƒ‰ƒŠƒA‚É‚¨‚¯‚éƒXƒ}[ƒgƒ[ƒ^‚©‚ç•úŽË‚³‚ê‚é‚Žü”gE’áŽü”g“dŽ¥ŠE‚Ì‘ª’èA

Chris Zombolas
1 & Andrew Wood2
1
FEMC Technologies, Keilor Park, Australia, Vic 3042

In response to a state government commission, the emissions from Smart Meters at 16 locations were measured and compared against relevant ELF and RF standards.
For RF, when adjusted for estimated worst case duty cycle and possible reflections, the meters were found to be less than 1% of the limit.
B­•{ˆÏˆõ‰ï‚Ì—v¿‚ÅA16‚©Š‚ŃXƒ}[ƒgƒ[ƒ^‚©‚ççtŽË‚³‚ê‚é’áŽü”g‚Æ‚Žü”g‚Ì“dŽ¥ŠE‚𑪒肵AƒI[ƒXƒgƒ‰ƒŠƒA‚Ì‹KŠi‚Æ”äŠr‚µ‚½B
‚Žü”g‚ÉŠÖ‚µ‚Ă͉”\«‚Ì‚ ‚锽ŽË‚âň«‚Ì”­MŠ„‡‚Ì„’è‚É‚æ‚Á‚Ä’²®‚ð‰Á‚¦‚½BŒ‹‰Ê‚Í‹K’è‚Ì‚P“ˆÈ‰º‚Å‚ ‚邱‚Æ‚ª”»‚Á‚½B

 

Table 1FƒXƒ}[ƒgƒ[ƒ^‚©‚ç30cm‚Ì‹——£‚É‚¨‚¯‚锘˜I‹­“x‚ðARPANSA‚Ì‹K’è’l‚ɑ΂·‚銄‚ðŽ¦‚·B
Å‘å‚Ì”­MŠ„‡‚ÌðŒB–50cm‚Å‚Ì‚Ý‘ª’è@@––•¡”‚̃[ƒ^‚ªÝ’u‚³‚ꂽ‰ÓŠ@NMF–¢‘ª’è

 

•Åƒgƒbƒv‚É–ß‚é

---